हिंदी

A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade. - Mathematics

Advertisements
Advertisements

प्रश्न

A card from a pack of 52 playing cards is lost. From the remaining cards of the pack three cards are drawn at random (without replacement) and are found to be all spades. Find the probability of the lost card being a spade.

उत्तर

Let E1, E2, E3, E4 and A be the event defined as below:

E1 = the missing card is a heart card
E2 = the missing card is a spade card
E3 = the missing card is a club card
E4 = the missing card is a diamond card
A = drawing three spade cards from the remaining cards

Now, we have the following:

`P(E_1)=13/52=1/4`

`P(E_2)=13/52=1/4`

`P(E_3)=13/52=1/4`

`P(E_4)=13/52=1/4`

`P(A/E_1)=(""^13C_3)/(""^51C_3)`

`P(A/E_2)=(""^12C_3)/(""^51C_3)`

`P(A/E_3)=(""^13C_3)/(""^51C_3)`

`P(A/E_4)=(""^13C_3)/(""^51C_3)`

By Bayes Theorem, we have:
Required probability =
`P(E_2/A)`

`=(P(E_1)P(A/E_2))/(P(A/E_1)E_1+P(A/E_2)E_2+P(A/E_3)E_3+P(A/E_4)E_4)`

`=(1/4xx(""^13C_3)/(""^51C_3))/((""^13C_3)/(""^51C_3)xx1/4+(""^12C_3)/(""^51C_3)xx1/4+(""^13C_3)/(""^51C_3)xx1/4+(""^13C_3)/(""^51C_3)xx1/4)`

`=(""^12C_3)/(""^12C_3+3xx""^13C_3)`

`=220/(220+286xx3)=110/539`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A and B are two independent events such that `P(barA∩ B) =2/15 and P(A ∩ barB) = 1/6`, then find P(A) and P(B).


A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.


A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on the coin’ and B be the event ‘3 on the die’. Check whether A and B are independent events or not.


If A and B are two events such that `P(A) = 1/4, P(B) = 1/2 and P(A ∩ B) = 1/8`, find P (not A and not B).


Events A and B are such that `P(A) = 1/2, P(B) = 7/12 and P("not A or not B") = 1/4` . State whether A and B are independent?


The probabilities of solving a specific problem independently by A and B are `1/3` and `1/5` respectively. If both try to solve the problem independently, find the probability that the problem is solved.


An urn contains four tickets marked with numbers 112, 121, 122, 222 and one ticket is drawn at random. Let Ai (i = 1, 2, 3) be the event that ith digit of the number of the ticket drawn is 1. Discuss the independence of the events A1, A2, and A3.


The odds against student X solving a business statistics problem are 8: 6 and odds in favour of student Y solving the same problem are 14: 16 What is the probability that neither solves the problem?


A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that, the balls are of different color?


Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls drawn are of same color


Solve the following:

If P(A) = `"P"("A"/"B") = 1/5, "P"("B"/"A") = 1/3` the find `"P"("B'"/"A'")`


Solve the following:

For three events A, B and C, we know that A and C are independent, B and C are independent, A and B are disjoint, P(A ∪ C) = `2/3`, P(B ∪ C) = `3/4`, P(A ∪ B ∪ C) = `11/12`. Find P(A), P(B) and P(C)


10% of the bulbs produced in a factory are of red colour and 2% are red and defective. If one bulb is picked up at random, determine the probability of its being defective if it is red.


If A and B are independent events such that 0 < P(A) < 1 and 0 < P(B) < 1, then which of the following is not correct?


If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of A, B) = `5/9`, then p = ______.


A and B are two events such that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`. Find: `"P"("B"/"A")`


Let E1 and E2 be two independent events such that P(E1) = P1 and P(E2) = P2. Describe in words of the events whose probabilities are: P1P2 


Two dice are tossed. Find whether the following two events A and B are independent: A = {(x, y): x + y = 11} B = {(x, y): x ≠ 5} where (x, y) denotes a typical sample point.


Let P(A) > 0 and P(B) > 0. Then A and B can be both mutually exclusive and independent.


If A and B are two independent events then P(A and B) = P(A).P(B).


If A and B are two events such that P(A|B) = p, P(A) = p, P(B) = `1/3` and P(A ∪ B) = `5/9`, then p = ______.


Let A and B be two events. If P(A | B) = P(A), then A is ______ of B.


Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.


Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6 and P(A' ∩ B') is ______.


Five fair coins are tossed simultaneously. The probability of the events that at least one head comes up is ______.


A problem in Mathematics is given to three students whose chances of solving it are `1/2, 1/3, 1/4` respectively. If the events of their solving the problem are independent then the probability that the problem will be solved, is ______.


The probability of the event A occurring is `1/3` and of the event B occurring is `1/2`. If A and B are independent events, then find the probability of neither A nor B occurring.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×