English

A and B are two events such that P (A) ≠ 0. Find P (B|A), if A is a subset of B. - Mathematics

Advertisements
Advertisements

Question

A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.

Sum

Solution

P (B|A) = `(P (A cap B))/(P (A))`

`= (P (A))/(P(A)) = 1`          ...(∵ A ⊂ B ⇒ A ∩ B = A)

A is a subset of set B.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise 13.6 [Page 582]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 13 Probability
Exercise 13.6 | Q 1.1 | Page 582

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Suppose that 80% of all families own a television set. If 5 families are interviewed at  random, find the probability that
a. three families own a television set.
b. at least two families own a television set.


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)


If `P(A) = 6/11, P(B) = 5/11 "and"  P(A ∪ B) = 7/11` find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(B|A)

Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple-choice question?


If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that

  1. both balls are red.
  2. first ball is black and second is red.
  3. one of them is black and other is red.

If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?


In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.


Suppose we have four boxes. A, B, C and D containing coloured marbles as given below:

Box Marble colour
  Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A?, box B?, box C?


A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both? 


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


If events A and B are independent, such that `P(A)= 3/5`,  `P(B)=2/3` 'find P(A ∪ B).


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when the first card drawn is replaced in the pack


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that one white and one black


A year is selected at random. What is the probability that it contains 53 Sundays


Choose the correct alternative:

If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is


A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______


Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.


The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is ______ 


If P(A) = `4/5`, and P(A ∩ B) = `7/10`, then P(B|A) is equal to ______.


If P(A ∩ B) = `7/10` and P(B) = `17/20`, then P(A|B) equals ______.


If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.


If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:


A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is ______.


Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)

If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.


Students of under graduation submitted a case study on “Understanding the Probability of Left-Handedness in Children Based on Parental Handedness”. Following Recent studies suggest that roughly 12% of the world population is left-handed. Depending on the parents’ handedness, the chances of having a left-handed child are as follows:

Scenario A: Both parents are left-handed, with a 24% chance of the child being left-handed.

Scenario B: The fathers is right-handed and the mothers left-handed, with a 22% chance of child being left-handed.

Scenario C: The fathers left-handed and the mother is right-handed, with a 17% chance of child being left-handed.

Scenario D: Both parents are right-handed, with a 9% chance of having a left-handed child.

Assuming that scenarios A, B, C and D are equally likely and L denotes the event that the child is left-handed, answer the following questions.

  1. What is the overall probability that a randomly selected child is left-handed?
  2. Given that exactly one parent is left-handed, what is the probability that a randomly selected child is left-handed?
  3. If a child is left-handed, what is the probability that both parents are left-handed?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×