Advertisements
Advertisements
Question
From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when the first card drawn is replaced in the pack
Solution
Let A ≡ the event that first card is diamond
B ≡ the event that second card is also a diamond
Since the first card is replaced in the pack, the two events A and B are independent.
∴ P(A ∩ B) = P(A)·P(B)
The probability of drawing one diamond card out of 52 cards is `13/52`.
∴ P(A) = P(B) = `13/52`
∴ P (both diamond cards) = P(A ∩ B)
= `13/52 xx 13/52`
= `1/16`.
APPEARS IN
RELATED QUESTIONS
Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. Interpret the result and state which of the above stated methods is more beneficial for the patient.
An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses
A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.
Find the probability of B, given that A has already occurred.
Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find
- P(A ∩ B)
- P(A|B)
- P(A ∪ B)
Determine P(E|F).
A coin is tossed three times, where
E: head on third toss, F: heads on first two tosses
A black and a red dice are rolled.
Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)
If P(A) = `1/2`, P(B) = 0, then P(A|B) is ______.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
- both balls are red.
- first ball is black and second is red.
- one of them is black and other is red.
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A is a subset of B.
In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.
A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.
Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?
If events A and B are independent, such that `P(A)= 3/5`, `P(B)=2/3` 'find P(A ∪ B).
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?
From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside
Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?
If A and B are two independent events such that P(A ∪ B) = 0.6, P(A) = 0.2, find P(B)
If for two events A and B, P(A) = `3/4`, P(B) = `2/5` and A ∪ B = S (sample space), find the conditional probability P(A/B)
A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that the problem is solved?
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are independent events
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5
Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?
Choose the correct alternative:
If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is
If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______
The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is ______
If P(A ∩ B) = `7/10` and P(B) = `17/20`, then P(A|B) equals ______.
If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.
If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:
Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.
It is given that the events A and B are such that P(A) = `1/4, P(A/B) = 1/2` and `P(B/A) = 2/3`, then P(B) is equal to ______.
If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.
If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.
Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.