Advertisements
Advertisements
Question
If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.
Options
0.24
0.3
0.48
0.96
Solution
If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to 0.96.
Explanation:
Given that: P(A) = 0.4
P(B) = 0.8
And `"P"("B"/"A")` = 0.6
`"P"("B"/"A") = ("P"("A" ∩ "B"))/("P"("A"))`
⇒ 0.6 = `("P"("A" ∩ "B"))/0.4`
∴ P(A ∩ B) = 0.6 × 0.4 = 0.24
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
= 0.4 + 0.8 – 0.24
= 1.20 – 0.24
= 0.96
APPEARS IN
RELATED QUESTIONS
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A ∪ B)
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A is a subset of B.
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.
In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.
A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.
Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.
Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?
If events A and B are independent, such that `P(A)= 3/5`, `P(B)=2/3` 'find P(A ∪ B).
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in subject I, if it is known that he is failed in subject II?
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?
An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?
Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?
Can two events be mutually exclusive and independent simultaneously?
If A and B are two independent events such that P(A ∪ B) = 0.6, P(A) = 0.2, find P(B)
If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and P(A ∪ B)
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black
Choose the correct alternative:
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is
If P(A) = `4/5`, and P(A ∩ B) = `7/10`, then P(B|A) is equal to ______.
Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:
If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is
Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?
For a biased dice, the probability for the different faces to turn up are
Face | 1 | 2 | 3 | 4 | 5 | 6 |
P | 0.10 | 0.32 | 0.21 | 0.15 | 0.05 | 0.17 |
The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.
Three friends go to a restaurant to have pizza. They decide who will pay for the pizza by tossing a coin. It is decided that each one of them will toss a coin and if one person gets a different result (heads or tails) than the other two, that person would pay. If all three get the same result (all heads or all tails), they will toss again until they get a different result.
- What is the probability that all three friends will get the same result (all heads or all tails) in one round of tossing?
- What is the probability that they will get a different result in one round of tossing?
- What is the probability that they will need exactly four rounds of tossing to determine who would pay?
Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.