English

Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32. - Mathematics

Advertisements
Advertisements

Question

Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.

Sum

Solution

Given, P(B) = 0.5 and P(A ∩ B) = 0.32

P(A|B) = `(P(A ∩ B))/(P(B)) `

`= 0.32/0.50`

`= 32/50 `

`= 16/25`

= 0.64

shaalaa.com
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Suppose that 80% of all families own a television set. If 5 families are interviewed at  random, find the probability that
a. three families own a television set.
b. at least two families own a television set.


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(A ∪ B)

If `P(A) = 6/11, P(B) = 5/11 "and"  P(A ∪ B) = 7/11` find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(B|A)

Determine P(E|F).

A coin is tossed three times, where

E: head on third toss, F: heads on first two tosses


Determine P(E|F).

A coin is tossed three times, where

E: at most two tails, F: at least one tail


Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that

  1. both balls are red.
  2. first ball is black and second is red.
  3. one of them is black and other is red.

A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


If events A and B are independent, such that `P(A)= 3/5`,  `P(B)=2/3` 'find P(A ∪ B).


In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.


A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


A year is selected at random. What is the probability that it contains 53 Sundays


A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays


Choose the correct alternative:

If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is


A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______


If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______ 


A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is ______.


It is given that the events A and B are such that P(A) = `1/4, P(A/B) = 1/2` and `P(B/A) = 2/3`, then P(B) is equal to ______. 


Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)

A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×