English

If for two events A and B, P(A – B) = 15 and P(A) = 35, then P(BA) is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.

Options

  • `1/2`

  • `2/5`

  • `3/5`

  • `2/3`

MCQ
Fill in the Blanks

Solution

If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to `underlinebb(2/3)`.

Explanation:

Given,

P(A – B) = `1/5` and P(A) = `3/5`

∵ P(A – B) = `P(A ∩ overlineB)` 

= P(A) – P(A ∩ B)

`\implies 1/5 = 3/5 - P(A ∩ B)`

`\implies` P(A ∩ B) = `3/5 - 1/5 = 2/5`

Now `P(B/A) = (P(A ∩ B))/(P(A))`

= `(2/5)/(3/5)`

= `2/3`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 3

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that

  1. the youngest is a girl.
  2. at least one is a girl.

A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.


Suppose that 80% of all families own a television set. If 5 families are interviewed at  random, find the probability that
a. three families own a television set.
b. at least two families own a television set.


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)


Determine P(E|F).

Mother, father and son line up at random for a family picture

E: son on one end, F: father in middle


A black and a red dice are rolled. 

Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.


Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.


A die is tossed thrice. Find the probability of getting an odd number at least once.


A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.


A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both? 


Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


Two dice are thrown simultaneously, If at least one of the dice show a number 5, what is the probability that sum of the numbers on two dice is 9?


A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in subject I, if it is known that he is failed in subject II?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside


If A and B are two independent events such that P(A ∪ B) = 0.6, P(A) = 0.2, find P(B)


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are mutually exclusive


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5


A year is selected at random. What is the probability that it contains 53 Sundays


Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.


A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.


Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.


Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.


If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is ______.


If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×