Advertisements
Advertisements
Question
If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent
Solution
Given A and B are twp events such that
P(A ∪ B) = 0.7, P(A ∩ B) = 0.2 and P(B) = 0.5
To prove A and B are independent it is enough to prove
P(A ∩ B) = P(A) . P(B)
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.7 = P (A) + 0.5 – 0.2
0.7 = P(A) + 0.3
P(A) = 0.7 – 0.3 = 0.4
P(A) . P(B) = 0.4 × 0.5 = 0.20
= P(A ∩ B)
∴ P(A∩B) = P(A) . P(B)
∴ A and B are independent.
APPEARS IN
RELATED QUESTIONS
A fair coin is tossed five times. Find the probability that it shows exactly three times head.
Suppose that 80% of all families own a television set. If 5 families are interviewed at random, find the probability that
a. three families own a television set.
b. at least two families own a television set.
Determine P(E|F).
A coin is tossed three times, where
E: at most two tails, F: at least one tail
Determine P(E|F).
Two coins are tossed once, where
E: no tail appears, F: no head appears
A black and a red dice are rolled.
Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.
A black and a red dice are rolled.
Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)
If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?
A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.
In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.
Two dice are thrown simultaneously, If at least one of the dice show a number 5, what is the probability that sum of the numbers on two dice is 9?
A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are mutually exclusive
A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays
If P(A) = `4/5`, and P(A ∩ B) = `7/10`, then P(B|A) is equal to ______.
If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.
Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:
A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.