Advertisements
Advertisements
प्रश्न
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
उत्तर
tan `[ 2 tan^-1 (1)/(2) - cot^-1 3]`
= tan `[tan^-1((2xx(1)/(2))/(1-(1/2)^2]) – cot^-1 3]`
= tan `[tan^-1{(1)/(1-(1)/(4)}} - tan^-1 1/3]`
= tan `[tan^-1 4/3 - tan^-1 (1)/(3)]`
= tan `[tan^-1 (((4)/(3) - (1)/(3))/(1+(4)/(9)))]`
= tan `[tan^-1 (((4 -1)/(3))/((9+4)/(9)))]`
= tan `[tan^-1 (1/(13/9))]`
= tan `[tan^-1 ((9)/(13)) ]`
= `(9)/(13)`
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of `cosec^(-1)(-sqrt2)`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: tan- 1( - √3)
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of cosec–1(– 1)
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
All trigonometric functions have inverse over their respective domains.
`"sin"^-1 (-1/2)`
3 tan-1 a is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What is the principal value of cosec–1(2).
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.