मराठी

Evaluate: Tan 2 Tan^-1 (1)/(2) – Cot^-1 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`

बेरीज

उत्तर

tan `[ 2 tan^-1  (1)/(2) - cot^-1 3]`

= tan `[tan^-1((2xx(1)/(2))/(1-(1/2)^2]) – cot^-1 3]`

= tan `[tan^-1{(1)/(1-(1)/(4)}} - tan^-1  1/3]`

= tan `[tan^-1  4/3 - tan^-1  (1)/(3)]`

= tan `[tan^-1 (((4)/(3) - (1)/(3))/(1+(4)/(9)))]`

= tan `[tan^-1 (((4 -1)/(3))/((9+4)/(9)))]`

= tan `[tan^-1  (1/(13/9))]`

= tan `[tan^-1 ((9)/(13)) ]`

= `(9)/(13)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `


Find the principal value of `cosec^(-1)(-sqrt2)`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


Find the principal value of the following: tan- 1( - √3)


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Evaluate cot(tan−1(2x) + cot−1(2x))


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of cosec–1(– 1)


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


All trigonometric functions have inverse over their respective domains.


`"sin"^-1 (-1/2)`


3 tan-1 a is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


What is the principal value of cosec–1(2).


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


If sin–1x – cos–1x = `π/6`, then x = ______.


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×