Advertisements
Advertisements
प्रश्न
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.
उत्तर
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is `underlinebb(1/8)`.
Explanation:
Given that: k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`
⇒ k = sin10°. sin50°. sin70°
⇒ k = sin10° sin(90° – 40°) sin(90° – 20°)
⇒ k = sin10° cos40° cos20°
⇒ k = `sin10^circ . 1/2 [2 cos 40^circ cos 20^circ]`
⇒ k = `sin 10^circ . 1/2 [cos(40^circ + 20^circ) + cos(40^circ - 20^circ)]`
⇒ k = `1/2 sin 10^circ [cos 60^circ + cos 20^circ]`
⇒ k = `1/2 sin 10^circ(1/2 + cos 20^circ)`
⇒ k = `1/4 sin 10^circ + 1/2 sin 10^circ . cos 20^circ`
⇒ k = `1/4 sin 10^circ + 1/4(2 sin 10^circ cos 20^circ)`
⇒ k = `1/4 sin 10^circ + 1/4[sin(10^circ + 20^circ) + sin(10^circ - 20^circ)]`
⇒ k = `1/4 sin 10^circ + 1/4[sin30^circ + sin(-10^circ)]`
⇒ k = `1/4 sin 10^circ + 1/4 sin 30^circ - 1/4 sin 10^circ`
= `1/4 sin 30^circ`
= `1/4 xx 1/2`
= `1/8`
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of sin50° – sin70° + sin10° is equal to ______.