हिंदी

If Tan X 2 = √ 1 − E 1 + E Tan α 2 , Then Cos α = - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]

विकल्प

  • \[1 - e \cos \left( \cos x + e \right)\]

  • \[\frac{1 + e \cos x}{\cos x - e}\]

  • \[\frac{1 - e \cos x}{\cos x - e}\]

  • \[\frac{\cos x - e}{1 - e \cos x}\]

MCQ

उत्तर

\[\frac{\cos x - e}{1 - e \cos x}\]

\[\text { Given } : \tan\frac{x}{2} = \sqrt{\frac{1 - e}{1 + e}}\tan\frac{\alpha}{2}\]

\[ \Rightarrow \frac{\tan\frac{x}{2}}{\tan\frac{\alpha}{2}} = \sqrt{\frac{1 - e}{1 + e}}\]

\[\text{ Squaring both sides, we get, }  \]

\[\frac{\tan^2 \frac{x}{2}}{\tan^2 \frac{\alpha}{2}} = \frac{1 - e}{1 + e}\]

\[ \Rightarrow \tan^2 \frac{\alpha}{2}\left( 1 - e \right) = \tan^2 \frac{x}{2}\left( 1 + e \right)\]

\[\Rightarrow \frac{\sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2}}\left( 1 - e \right) = \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}\left( 1 + e \right)\]

\[ \Rightarrow \frac{\frac{1}{2}\left( 1 - cos\alpha \right)}{\frac{1}{2}\left( 1 + cos\alpha \right)}\left( 1 - e \right) = \frac{\frac{1}{2}\left( 1 - \text{ cos } x \right)}{\frac{1}{2}\left( 1 + \text{ cos } x \right)}\left( 1 + e \right)\]

\[ \Rightarrow \left( 1 - cos\alpha \right)\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 + cos\alpha \right)\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - cos\alpha\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 - \text{ cos } x \right)\left( 1 + e \right) + cos\alpha\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow cos\alpha\left\{ \left( 1 + \text{ cos } x \right)\left( 1 - e \right) + \left( 1 - \text{ cos } x \right)\left( 1 + e \right) \right\} = \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - \left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow cos\alpha = \frac{2\text{ cos } x - 2e}{2 - 2ecosx} = \frac{\text{ cos } x - e}{1 - ecosx}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 26 | पृष्ठ ४४

संबंधित प्रश्न

Prove that:  \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that:  \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]

 

Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]


\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\]  is equal to


If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The value of sin 20° sin 40° sin 60° sin 80° is ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×