Advertisements
Advertisements
प्रश्न
उत्तर
\[LHS = \sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right)\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left( \frac{2\pi}{3} + x \right) - \sin3\left( \frac{2\pi}{3} + x \right)}{4} + \frac{3\sin\left( \frac{4\pi}{3} + x \right) - \sin3\left( \frac{4\pi}{3} + x \right)}{4} \]
\[ \left[ \sin^3 \theta = \frac{3sin\theta - \sin3\theta}{4} \right]\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left\{ \pi - \left( \frac{2\pi}{3} + x \right) \right\} - \sin\left( 2\pi + 3x \right)}{4} + \frac{3\sin\left\{ \pi + \left( \frac{\pi}{3} + x \right) \right\} - \sin\left( 4\pi + 3x \right)}{4}\]
\[ = \frac{1}{4}\left[ \left( 3\text{ sin } x - \sin3x \right) + \left\{ 3\sin\left( \frac{\pi}{3} - x \right) - \sin3x \right\} - \left\{ 3\sin\left( \frac{\pi}{3} + x \right) + \sin3x \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - \sin3x + 3\sin\left( \frac{\pi}{3} - x \right) - 3\sin\left( \frac{\pi}{3} + x \right) - \sin3x - \sin3x \right]\]
\[= \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ \sin\left( \frac{\pi}{3} - x \right) - \sin\left( \frac{\pi}{3} + x \right) \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ 2\cos\frac{\frac{\pi}{3} - x + \frac{\pi}{3} + x}{2}\sin\frac{\frac{\pi}{3} - x - \frac{\pi}{3} - x}{2} \right\} \right]\]
\[ \left[ \because sinC - sinD = 2\cos\frac{C + D}{2}\sin\frac{C - D}{2} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 6\cos\frac{\pi}{3}\sin\left( - x \right) \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\text{ sin } 3x - 3\text{ sin } x \right]\]
\[ = - \frac{3}{4}\text{ sin } x\]
\[ = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
The greatest value of sin x cos x is ______.
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of sin50° – sin70° + sin10° is equal to ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.