Advertisements
Advertisements
प्रश्न
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
उत्तर
Given: \[a \cos2x + b \sin2x = c\]
\[\Rightarrow a\left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) + b\left( \frac{2\text{ tan } x}{1 + \tan^2 x} \right) - c = 0\]
\[ \Rightarrow a\left( 1 - \tan^2 x \right) + 2b \text{ tan } x - c\left( 1 + \tan^2 x \right) = 0\]
\[ \Rightarrow a - a \tan^2 x + 2b \text{ tan } x - c - c \tan^2 x = 0\]
\[ \Rightarrow \left( a + c \right) \tan^2 x - 2b \text{ tan } x + \left( c - a \right) = 0 . . . . . \left( 1 \right)\]
This a quadratic equation in terms of \[\tan^2 x\] .
It is given that α and β are the roots of the given equation, so tan α and tan β are the roots of (1).
Since tan α and tan β are the roots of the equation
\[ \Rightarrow \tan\alpha + \tan\beta = \frac{2b}{a + c}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of sin 20° sin 40° sin 60° sin 80° is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
The value of `(sin 50^circ)/(sin 130^circ)` is ______.