Advertisements
Advertisements
प्रश्न
The value of sin 20° sin 40° sin 60° sin 80° is ______.
विकल्प
`(-3)/16`
`5/16`
`3/16`
`1/16`
उत्तर
The value of sin 20° sin 40° sin 60° sin 80° is `3/16`.
Explanation:
Indeed sin 20° sin 40° sin 60° sin 80°.
= `sqrt(3)/2` sin 20° sin (60° – 20°) sin (60° + 20°) (since sin 60° = `sqrt(3)/2`)
= `sqrt(3)/2` sin 20° [sin260° – sin220°]
= `sqrt(3)/2 sin 20^circ [3/4 - sin^2 20^circ]`
= `sqrt(3)/2 xx 1/4` [3sin 20° – 4sin320°]
= `sqrt(3)/2 xx 1/4` (sin 60°)
= `sqrt(3)/2 xx 1/4 xx sqrt(3)/2`
= `3/16`
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]