हिंदी

Prove that: cos 2 ( π 4 − x ) − sin 2 ( π 4 − x ) = sin 2 x - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]

संख्यात्मक

उत्तर

\[LHS = \cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right)\]

\[ = \cos2\left( \frac{\pi}{4} - x \right) \left[ \because \cos^2 \alpha - \sin^2 \alpha = \cos2\alpha \right]\]

\[ = \cos\left( \frac{\pi}{2} - 2x \right)\]

\[ = \sin2x = RHS \left[ \because \cos\left( \frac{\pi}{2} - 2\alpha \right) = \sin2\alpha \right]\]

\[\text{ Hence proved }  .\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 16 | पृष्ठ २८

संबंधित प्रश्न

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

If  \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]

 


The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


The value of sin 20° sin 40° sin 60° sin 80° is ______.


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×