हिंदी

Sin 5 X = 5 Cos 4 X Sin X − 10 Cos 2 X Sin 3 X + Sin 5 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 

संख्यात्मक

उत्तर

\[LHS = \sin5x\]
\[ = \sin\left( 3x + 2x \right)\]
\[ = \sin3x \times \cos2x + \cos3x \times \sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 2 \cos^2 x - 1 \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right) \times 2\text{  sin } x \text{  cos } x\]
\[ = - 3\text{  sin } x + 4 \sin^3 x + 6\text{  sin } x \cos^2 x - 8 \sin^3 x \cos^2 x + 8\text{ sin } x \cos^4 x - 6\text{  sin } x \cos^2 x\]
\[ = 8\text{ sin } x \cos^4 x - 8 \sin^3 x \cos^2 x - 3\text{ sin }  x + 4 \sin^3 x\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin } x + 3\text{ sin } x \cos^4 x + 4 \sin^3 x + 2 \sin^3 x \cos^2 x\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin} x\left( 1 - \cos^4 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]

\[= 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin }x\left( 1 - \cos^2 x \right)\left( 1 + \cos^2 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3 \sin^3 x\left( 1 + \cos^2 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x\left[ 3\left( 1 + \cos^2 x \right) - 2\left( 2 + \cos^2 x \right) \right]\]
\[ = 5\text{  sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x\left[ 3 + 3 \cos^2 x - 4 - 2 \cos^2 x \right]\]
\[ = 5\text{ sin  }x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x \left[ \cos^2 x - 1 \right]\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x \times \left( - \sin^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x + \sin^5 x\]
\[ = 5 \cos^4 x \text{ sin } x - 10 \cos^2 x \sin^3 x + \sin^5 x\]
\[ = RHS\]
\[\text{ Hence proved } .\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.2 | Q 8 | पृष्ठ ३६

संबंधित प्रश्न

Prove that:  \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]


Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]

, then find the value of tan2A.

 

 


If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


If  \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .

 

 


If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×