हिंदी

Prove that: cos 7 ° cos 14 ° cos 28 ° cos 56 ° = sin 68 ° 16 cos 83 ° - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 
संख्यात्मक

उत्तर

\[LHS = \cos7° \cos14°\cos28°\cos56°\]

On dividing and multiplying by \[2\sin 7^\circ\] , we get

\[= \frac{1}{2\sin7^\circ } \times 2\sin7^\circ \times \cos7^\circ \times \cos14^\circ \times \cos28^\circ \times \cos56^\circ\]
\[ = \frac{2\sin14^\circ}{2 \times 2\sin7^\circ} \times \cos14^\circ \times \cos28^\circ \times \cos56^\circ \]
\[ = \frac{2\sin28^\circ}{2 \times 4\sin7^\circ} \times \cos28^\circ \times \cos56^\circ\] 

\[= \frac{2\sin56^\circ}{2 \times 8\sin7^\circ} \times \cos56^\circ\]
\[ = \frac{\sin112^\circ}{16\sin7^\circ}\]
\[ = \frac{\sin\left( 180^\circ- 68^\circ\right)}{16\sin\left( 90^\circ - 83^\circ \right)}\]
\[ = \frac{\sin68^\circ}{16\cos83^\circ} \left[ \because \sin\left( 180^\circ - \theta \right) = sin\theta \sin\left( 90^\circ - \theta \right) = cos\theta \right]\]
\[ = RHS\]
\[\text{ Hence proved } .\]
shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 33 | पृष्ठ २९

संबंधित प्रश्न

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that 
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]


If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]

 

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The greatest value of sin x cos x is ______.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


The value of cos12° + cos84° + cos156° + cos132° is ______.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×