हिंदी

Prove That: Cos π 15 Cos 2 π 15 Cos 3 π 15 Cos 4 π 15 Cos 5 π 15 Cos 6 π 15 Cos 7 π 15 = 1 128 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 
संख्यात्मक

उत्तर

\[LHS = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{3\pi}{15} \cos\frac{5\pi}{15} \cos\frac{6\pi}{15} \cos\frac{7\pi}{15}\]
\[ = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15}\left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right) \times \left( - \cos\frac{8\pi}{15} \right)\]
\[ = - \frac{1}{2}\left[ \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{2} \times \left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{1}{2} \times \frac{2^3}{2^4 \sin\frac{\pi}{15}}\left[ 2\sin\frac{\pi}{15}\cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{2^2 \times \sin\frac{3\pi}{15}} \left( 2\sin\frac{3\pi}{15}\cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^3}{132\sin\frac{\pi}{15}}\left[ \sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{4\sin\frac{3\pi}{15}} \left( \sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^2}{32\sin\frac{\pi}{15}}\left[ 2\sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{4\sin\frac{3\pi}{15}} \left( 2\sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]

\[= - \frac{2}{32\sin\frac{\pi}{15}}\left[ \sin\frac{8\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]

\[ = - \frac{1}{32\sin\frac{\pi}{15}}\left[ \sin\frac{16\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]

\[ = - \frac{\sin\left( \pi + \frac{\pi}{15} \right)}{128\sin\frac{\pi}{15}} \times \frac{\sin\left( \pi - \frac{3\pi}{15} \right)}{\sin\frac{3\pi}{15}}\]

\[ = - \frac{- \sin\frac{\pi}{15}}{128\sin\frac{\pi}{15}} \times \frac{\sin\frac{3\pi}{15}}{\sin\frac{3\pi}{15}}\]

\[ = \frac{1}{128}\]

\[ = RHS\]

\[\text{ Hence proved}  .\] 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.3 | Q 10 | पृष्ठ ४२

संबंधित प्रश्न

Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{\pi}{3} - x \right) = 3 \cot 3x\]

 


Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\]  is equal to


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`


The value of cos12° + cos84° + cos156° + cos132° is ______.


The value of sin50° – sin70° + sin10° is equal to ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×