Advertisements
Advertisements
प्रश्न
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
उत्तर
\[LHS = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{3\pi}{15} \cos\frac{5\pi}{15} \cos\frac{6\pi}{15} \cos\frac{7\pi}{15}\]
\[ = \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15}\left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right) \times \left( - \cos\frac{8\pi}{15} \right)\]
\[ = - \frac{1}{2}\left[ \cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{2} \times \left( \cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{1}{2} \times \frac{2^3}{2^4 \sin\frac{\pi}{15}}\left[ 2\sin\frac{\pi}{15}\cos\frac{\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{2^2 \times \sin\frac{3\pi}{15}} \left( 2\sin\frac{3\pi}{15}\cos\frac{3\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^3}{132\sin\frac{\pi}{15}}\left[ \sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{2}{4\sin\frac{3\pi}{15}} \left( \sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[ = - \frac{2^2}{32\sin\frac{\pi}{15}}\left[ 2\sin\frac{2\pi}{15} \cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{1}{4\sin\frac{3\pi}{15}} \left( 2\sin\frac{6\pi}{15} \cos\frac{6\pi}{15} \right)\]
\[= - \frac{2}{32\sin\frac{\pi}{15}}\left[ \sin\frac{8\pi}{15} \cos\frac{8\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]
\[ = - \frac{1}{32\sin\frac{\pi}{15}}\left[ \sin\frac{16\pi}{15} \right] \times \frac{\sin\frac{12\pi}{15}}{4\sin\frac{3\pi}{15}}\]
\[ = - \frac{\sin\left( \pi + \frac{\pi}{15} \right)}{128\sin\frac{\pi}{15}} \times \frac{\sin\left( \pi - \frac{3\pi}{15} \right)}{\sin\frac{3\pi}{15}}\]
\[ = - \frac{- \sin\frac{\pi}{15}}{128\sin\frac{\pi}{15}} \times \frac{\sin\frac{3\pi}{15}}{\sin\frac{3\pi}{15}}\]
\[ = \frac{1}{128}\]
\[ = RHS\]
\[\text{ Hence proved} .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of sin50° – sin70° + sin10° is equal to ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.