हिंदी

If 0 ≤ X ≤ π and X Lies in the Iind Quadrant Such that Sin X = 1 4 . Find the Values of Cos X 2 , Sin X 2 and Tan X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 

संख्यात्मक

उत्तर

\[\sin x = \frac{1}{4}\]
\[\therefore \text{ sin } x = \sqrt{1 - \cos^2 x}\]
\[ \Rightarrow \left( \frac{1}{4} \right)^2 = 1 - \cos^2 x\]
\[ \Rightarrow \frac{1}{16} - 1 = - \cos^2 x\]
\[ \Rightarrow \frac{15}{16} = \cos^2 x\]
\[ \Rightarrow \text{ cos } x = \pm \frac{\sqrt{15}}{4}\]
Since x lies in the 2nd quadrant, cos x is negative.
Thus,
\[\text{ cos } x = - \frac{\sqrt{15}}{4}\]
Now, using the identity
\[\text{ cos } x = 2 \cos^2 \frac{x}{2} - 1\] , we get 
\[- \frac{\sqrt{15}}{4} = 2 \cos^2 \frac{x}{2} - 1\]
\[ \Rightarrow - \frac{\sqrt{15}}{8} = \cos^2 \frac{x}{2} - \frac{1}{2}\]
\[ \Rightarrow \cos^2 \frac{x}{2} = \frac{4 - \sqrt{15}}{8}\]
\[ \Rightarrow \cos\frac{x}{2} = \pm \frac{4 - \sqrt{15}}{8}\]
Since x lies in the 2nd quadrant and \[\frac{x}{2}\]  lies in the 1st quadrant, \[\cos\frac{x}{2}\]  is positive.
\[\therefore \cos\frac{x}{2} = \frac{4 - \sqrt{15}}{8}\]
Again,
\[\text { cos } x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{\sqrt{15}}{4} = $\left( \sqrt{\frac{4 - \sqrt{15}}{8}} \right)^2$ - \sin^2 \frac{x}{2}\]
\[ \Rightarrow - \frac{\sqrt{15}}{4} = $\frac{4 - \sqrt{15}}{8}$ - \sin^2 \frac{x}{2}\]
\[ \Rightarrow \sin^2 \frac{x}{2} = \frac{4 + \sqrt{15}}{8}\]
\[ \Rightarrow \sin\frac{x}{2} = \pm \sqrt{\frac{4 + \sqrt{15}}{8}} = \sqrt{\frac{4 + \sqrt{15}}{8}} \]
Now,
\[\tan\frac{x}{2} = \frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}\]
\[ = \frac{\sqrt{\frac{4 + \sqrt{15}}{8}}}{\sqrt{\frac{4 - \sqrt{15}}{8}}} = \sqrt{\frac{4 + \sqrt{15}}{4 - \sqrt{15}}}\]
\[ = \sqrt{\frac{\left( 4 + \sqrt{15} \right)\left( 4 + \sqrt{15} \right)}{\left( 4 - \sqrt{15} \right)\left( 4 + \sqrt{15} \right)}}\]
\[ = \frac{4 + \sqrt{15}}{4^2 - \left( \sqrt{15} \right)^2} = \frac{4 + \sqrt{15}}{16 - 15} = 4+\sqrt{15}\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 30.1 | पृष्ठ २९

संबंधित प्रश्न

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]

 

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]

, then find the value of tan2A.

 

 


The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


If  \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]

 


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]

 

If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then

\[\cos2\alpha\]   is equal to

 

If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The greatest value of sin x cos x is ______.


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×