हिंदी

Prove that : Sin π 5 Sin 2 π 5 Sin 3 π 5 Sin 4 π 5 = 5 16 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 
संख्यात्मक

उत्तर

\[LHS = \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5}\]

\[ = \frac{1}{2}\left( 2 \sin\frac{\pi}{5} \sin\frac{4\pi}{5} \right)\frac{1}{2}\left( 2 \sin\frac{2\pi}{5} \sin\frac{3\pi}{5} \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{\pi}{5} - \frac{4\pi}{5} \right) - \cos\left( \frac{\pi}{5} + \frac{4\pi}{5} \right) \right)\left( \cos\left( \frac{2\pi}{5} - \frac{3\pi}{5} \right) - \cos\left( \frac{2\pi}{5} + \frac{3\pi}{5} \right) \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{- 3\pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\left( \cos\left( \frac{- \pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) - \cos\left( \pi \right) \right)\left( \cos\left( \frac{\pi}{5} \right) - \cos\left( \pi \right) \right)\]

\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( \cos\left( \pi - \frac{2\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \cos\left( \frac{2\pi}{5} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4} \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4} \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right)\left( \frac{\sqrt{5} + 1}{4} \right) - \left( \frac{\sqrt{5} - 1}{4} \right) + \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{\left( \sqrt{5} \right)^2 - 1}{16} \right) + \left( \frac{\sqrt{5} + 1 - \sqrt{5} + 1}{4} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \left( \frac{4}{16} \right) + \left( \frac{2}{4} \right) + 1 \right)\]

\[ = \frac{1}{4}\left( - \frac{1}{4} + \frac{2}{4} + 1 \right)\]

\[ = \frac{1}{4}\left( \frac{- 1 + 2 + 4}{4} \right)\]

\[ = \frac{5}{16}\]

\[ = RHS\]

Thus, LHS = RHS
Hence,

\[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.3 | Q 9 | पृष्ठ ४२

संबंधित प्रश्न

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

The value of  \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is 

 

If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

\[\frac{\sin 5x}{\sin x}\]  is equal to

 


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×