Advertisements
Advertisements
प्रश्न
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
उत्तर
\[LHS = \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5}\]
\[ = \frac{1}{2}\left( 2 \sin\frac{\pi}{5} \sin\frac{4\pi}{5} \right)\frac{1}{2}\left( 2 \sin\frac{2\pi}{5} \sin\frac{3\pi}{5} \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{\pi}{5} - \frac{4\pi}{5} \right) - \cos\left( \frac{\pi}{5} + \frac{4\pi}{5} \right) \right)\left( \cos\left( \frac{2\pi}{5} - \frac{3\pi}{5} \right) - \cos\left( \frac{2\pi}{5} + \frac{3\pi}{5} \right) \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{- 3\pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\left( \cos\left( \frac{- \pi}{5} \right) - \cos\left( \frac{5\pi}{5} \right) \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) - \cos\left( \pi \right) \right)\left( \cos\left( \frac{\pi}{5} \right) - \cos\left( \pi \right) \right)\]
\[ = \frac{1}{4}\left( \cos\left( \frac{3\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( \cos\left( \pi - \frac{2\pi}{5} \right) + 1 \right)\left( \cos\left( \frac{\pi}{5} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \cos\left( \frac{2\pi}{5} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4} \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right) + 1 \right)\left( \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right) \left( \because \cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4} \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{\sqrt{5} - 1}{4} \right)\left( \frac{\sqrt{5} + 1}{4} \right) - \left( \frac{\sqrt{5} - 1}{4} \right) + \left( \frac{\sqrt{5} + 1}{4} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{\left( \sqrt{5} \right)^2 - 1}{16} \right) + \left( \frac{\sqrt{5} + 1 - \sqrt{5} + 1}{4} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \left( \frac{4}{16} \right) + \left( \frac{2}{4} \right) + 1 \right)\]
\[ = \frac{1}{4}\left( - \frac{1}{4} + \frac{2}{4} + 1 \right)\]
\[ = \frac{1}{4}\left( \frac{- 1 + 2 + 4}{4} \right)\]
\[ = \frac{5}{16}\]
\[ = RHS\]
Thus, LHS = RHS
Hence,
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.