Advertisements
Advertisements
प्रश्न
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
उत्तर
\[LHS = \sin^2 24° - \sin^2 6° \]
\[ = \sin\left( 24° + 6° \right) \sin\left( 24° - 6° \right) \left[ \sin\left( A + B \right) \sin\left( A - B \right) = \sin^2 A - \sin^2 B \right]\]
\[ = \sin30° \sin18° \]
\[ = \frac{1}{2} \times \frac{\sqrt{5} - 1}{4} \left( \because \sin18° = \frac{\sqrt{5} - 1}{4} \right)\]
\[ = \frac{\sqrt{5} - 1}{8}\]
\[ = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of `cos^2 48^@ - sin^2 12^@` is ______.
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.