Advertisements
Advertisements
प्रश्न
The value of `cos^2 48^@ - sin^2 12^@` is ______.
पर्याय
- `(sqrt5 + 1)/(2 sqrt2)`
- `(sqrt5 + 1)/(5)`
- `(sqrt5 - 1)/(8)`
- `(sqrt5 + 1)/(8)`
उत्तर
The value of `cos^2 48^@ - sin^2 12^@` is `bbunderline((sqrt5 + 1)/(8))`.
Explanation:
\[\cos^2 48° - \sin^2 12°\]
\[ = \cos\left( 48° + 12° \right)\cos\left( 48° - 12° \right) \left[ \cos\left( A + B \right)\cos\left( A - B \right) = \cos^2 A - \sin^2 B \right]\]
\[ = \cos60° \cos36° \]
\[ = \frac{1}{2} \times \left( \frac{\sqrt{5} + 1}{4} \right)\]
\[ = \frac{\sqrt{5} + 1}{8}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of sin 20° sin 40° sin 60° sin 80° is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.