मराठी

If Tan a = 1 7 and Tan B = 1 3 , Show that Cos 2a = Sin 4b - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 

संख्यात्मक

उत्तर

Given: 

\[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\]
Using the identity  \[\tan2B = \frac{2\text{ tan } B}{1 - \tan^2 B}\] , we get
\[\tan2B = \frac{2 \times \frac{1}{3}}{1 - \frac{1}{9}} = \frac{3}{4}\] 
Now, using the identities 
\[\cos2A = \frac{1 - \tan^2 A}{1 + \tan^2 A} \text{ and }  \sin4B = \frac{2\tan2B}{1 + \tan^2 2B}\] , we get
\[\cos2A = \frac{1 - \left( \frac{1}{7} \right)^2}{1 + \left( \frac{1}{7} \right)^2} \text{ and }  \sin4B = \frac{2 \times \frac{3}{4}}{1 + \left( \frac{3}{4} \right)^2}\]
\[ \Rightarrow \cos2A = \frac{48}{50} \text{ and }  \sin4B = \frac{2 \times \frac{3}{4} \times 16}{25}\]
\[ \Rightarrow \cos2A = \frac{24}{25} \text{ and }  \sin4B = \frac{24}{25}\]

∴ cos 2A = sin 4B

 
 

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 32 | पृष्ठ २९

संबंधित प्रश्‍न

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] . 

 

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

\[\frac{\sin 3x}{1 + 2 \cos 2x}\]   is equal to


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]

 

The value of `cos^2 48^@ - sin^2 12^@` is ______.


The value of sin 20° sin 40° sin 60° sin 80° is ______.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×