Advertisements
Advertisements
प्रश्न
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
उत्तर
Equation \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] can be written as \[\frac{1}{\cos\left( x + \alpha \right)} + \frac{1}{\cos\left( x - \alpha \right)} = \frac{2}{\text{ cos } x}\]
\[ \Rightarrow \frac{1}{\text{ cos } x \times cos\alpha - \text{ sin } x \times sin\alpha} + \frac{1}{\text{ cos } x \times cos\alpha + \text{ sin } x \times sin\alpha} = \frac{2}{\text{ cos } x} \left[ \because \cos\left( A + B \right) = \text{ cos } A \times \text{ cos } B - \text{ sin } A \times \text
{ sin } B \text{ and } \cos\left( A - B \right) = \text{ cos } A \times \text{ cos } B + \text{ sin } A \times \text{ sin } B \right] \]
\[ \Rightarrow \frac{2\text{ cos } x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \sin^2 x \times \sin^2 \alpha} = \frac{2}{\text{ cos } x}\]
\[ \Rightarrow \frac{\text{ cos } x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \left( 1 - \cos^2 x \right) \times \sin^2 \alpha} = \frac{1}{\text{ cos } x}\]
\[\Rightarrow \frac{\cos^2 x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \left( 1 - \cos^2 x \right) \times \sin^2 \alpha} = 1\]
\[ \Rightarrow \frac{\cos^2 x \times cos\alpha}{\cos^2 x \times \cos^2 \alpha - \sin^2 \alpha + \cos^2 x \sin^2 \alpha} = 1\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x \times \cos^2 \alpha - \sin^2 \alpha + \cos^2 x \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x\left( \cos^2 \alpha + \sin^2 \alpha \right) - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x \times cos\alpha = \cos^2 x - \sin^2 \alpha\]
\[\Rightarrow \cos^2 x \times cos\alpha - \cos^2 x = - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x\left( cos\alpha - 1 \right) = - \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x\left( 1 - cos\alpha \right) = \sin^2 \alpha\]
\[ \Rightarrow \cos^2 x = \frac{\sin^2 \alpha}{2 \sin^2 \frac{\alpha}{2}} \left( \because 2 \sin^2 \frac{x}{2} = 1 - \text{ cos } x \right)\]
\[\Rightarrow \cos^2 x = \frac{4 \sin^2 \frac{\alpha}{2} \times \cos^2 \frac{\alpha}{2}}{2 \sin^2 \frac{\alpha}{2}} \left( \because \sin^2 x = 4 \sin^2 \frac{x}{2} \times \cos^2 \frac{x}{2} \right) \]
\[ \Rightarrow \text{ cos } x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.