मराठी

Sin 3 X + Sin 3 ( 2 π 3 + X ) + Sin 3 ( 4 π 3 + X ) = − 3 4 Sin 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 

संख्यात्मक

उत्तर

\[LHS = \sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right)\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left( \frac{2\pi}{3} + x \right) - \sin3\left( \frac{2\pi}{3} + x \right)}{4} + \frac{3\sin\left( \frac{4\pi}{3} + x \right) - \sin3\left( \frac{4\pi}{3} + x \right)}{4} \]
\[ \left[ \sin^3 \theta = \frac{3sin\theta - \sin3\theta}{4} \right]\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left\{ \pi - \left( \frac{2\pi}{3} + x \right) \right\} - \sin\left( 2\pi + 3x \right)}{4} + \frac{3\sin\left\{ \pi + \left( \frac{\pi}{3} + x \right) \right\} - \sin\left( 4\pi + 3x \right)}{4}\]
\[ = \frac{1}{4}\left[ \left( 3\text{ sin } x - \sin3x \right) + \left\{ 3\sin\left( \frac{\pi}{3} - x \right) - \sin3x \right\} - \left\{ 3\sin\left( \frac{\pi}{3} + x \right) + \sin3x \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - \sin3x + 3\sin\left( \frac{\pi}{3} - x \right) - 3\sin\left( \frac{\pi}{3} + x \right) - \sin3x - \sin3x \right]\]

\[= \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ \sin\left( \frac{\pi}{3} - x \right) - \sin\left( \frac{\pi}{3} + x \right) \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ 2\cos\frac{\frac{\pi}{3} - x + \frac{\pi}{3} + x}{2}\sin\frac{\frac{\pi}{3} - x - \frac{\pi}{3} - x}{2} \right\} \right]\]
\[ \left[ \because sinC - sinD = 2\cos\frac{C + D}{2}\sin\frac{C - D}{2} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 6\cos\frac{\pi}{3}\sin\left( - x \right) \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\text{ sin } 3x - 3\text{ sin } x \right]\]
\[ = - \frac{3}{4}\text{ sin } x\]
\[ = RHS\]
\[\text{ Hence proved } .\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.2 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.2 | Q 9 | पृष्ठ ३७

संबंधित प्रश्‍न

Prove that:  \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]


Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\]  is equal to


If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


The value of sin 20° sin 40° sin 60° sin 80° is ______.


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


The value of sin50° – sin70° + sin10° is equal to ______.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×