Advertisements
Advertisements
प्रश्न
उत्तर
\[LHS = \sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right)\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left( \frac{2\pi}{3} + x \right) - \sin3\left( \frac{2\pi}{3} + x \right)}{4} + \frac{3\sin\left( \frac{4\pi}{3} + x \right) - \sin3\left( \frac{4\pi}{3} + x \right)}{4} \]
\[ \left[ \sin^3 \theta = \frac{3sin\theta - \sin3\theta}{4} \right]\]
\[ = \frac{3\text{ sin } x - \sin3x}{4} + \frac{3\sin\left\{ \pi - \left( \frac{2\pi}{3} + x \right) \right\} - \sin\left( 2\pi + 3x \right)}{4} + \frac{3\sin\left\{ \pi + \left( \frac{\pi}{3} + x \right) \right\} - \sin\left( 4\pi + 3x \right)}{4}\]
\[ = \frac{1}{4}\left[ \left( 3\text{ sin } x - \sin3x \right) + \left\{ 3\sin\left( \frac{\pi}{3} - x \right) - \sin3x \right\} - \left\{ 3\sin\left( \frac{\pi}{3} + x \right) + \sin3x \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - \sin3x + 3\sin\left( \frac{\pi}{3} - x \right) - 3\sin\left( \frac{\pi}{3} + x \right) - \sin3x - \sin3x \right]\]
\[= \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ \sin\left( \frac{\pi}{3} - x \right) - \sin\left( \frac{\pi}{3} + x \right) \right\} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 3\left\{ 2\cos\frac{\frac{\pi}{3} - x + \frac{\pi}{3} + x}{2}\sin\frac{\frac{\pi}{3} - x - \frac{\pi}{3} - x}{2} \right\} \right]\]
\[ \left[ \because sinC - sinD = 2\cos\frac{C + D}{2}\sin\frac{C - D}{2} \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\sin3x + 6\cos\frac{\pi}{3}\sin\left( - x \right) \right]\]
\[ = \frac{1}{4}\left[ 3\text{ sin } x - 3\text{ sin } 3x - 3\text{ sin } x \right]\]
\[ = - \frac{3}{4}\text{ sin } x\]
\[ = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of sin50° – sin70° + sin10° is equal to ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.