Advertisements
Advertisements
प्रश्न
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
उत्तर
\[\frac{\pi}{3} = 60° , \frac{2\pi}{3} = 120° \]
\[LHS = \text{ cot } x + \cot\left( 60° + x \right) + \cot\left( 120° + x \right)\]
\[ = \text{ cot } x + \cot\left( 60° + x \right) - \cot\left[ 180° - \left( 120° + x \right) \right] \]
\[ \left( \because - cot\theta = \cot\left( 180° - \theta \right) \right)\]
\[ = \text{ cot } x + \cot\left( 60° + x \right) - \cot\left( 60° - x \right)\]
\[ = \frac{1}{\text{ tan } x} + \frac{1}{\tan\left( 60° + x \right)} - \frac{1}{\tan\left( 60° - x \right)}\]
\[= \frac{1}{\text{ tanx } } + \frac{1 - \sqrt{3}\text{ tan } x}{\sqrt{3} + \text{ tan } x} - \frac{1 + \sqrt{3}\text{ tan } x}{\sqrt{3} - \text{ tan } x}\]
\[ \left[ \tan\left( x + y \right) = \frac{\text{ tan } x + \text{ tan } y}{1 - \text{ tan } x\text{ tan } y} \text{ and } \tan\left( x - y \right) = \frac{\text{ tan } x - \text{ tan } y}{1 + \text{ tan } x \text{ tan } y} \right]\]
\[ = \frac{1}{\text{ tan } x} - \frac{8\text{ tan } x}{3 - \tan^2 x}\]
\[ = \frac{3 - \tan^2 x - 8 \tan^2 x}{3\text{ tan } x - \tan^3 x}\]
\[ = \frac{3 - 9 \tan^2 x}{3\text{ tan } x - \tan^3 x}\]
\[ = 3\left( \frac{1 - 3 \tan^2 x}{3\text{ tan } x - \tan^3 x} \right)\]
\[ = 3 \times \frac{1}{\tan3x} \left( \because \tan3\theta = \frac{3tan\theta - \tan^3 \theta}{1 - 3 \tan^2 \theta} \right)\]
\[ = 3\cot 3x\]
\[ = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
The value of sin50° – sin70° + sin10° is equal to ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.