मराठी

Prove That: Cos 4 X − Cos 4 α = 8 ( Cos X − Cos α ) ( Cos X + Cos α ) ( Cos X − Sin α ) ( Cos X + Sin α ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]

संख्यात्मक

उत्तर

\[RHS = 8\left( \text{ cos } x - cos \alpha \right) \left( \text{ cos } x + cos\alpha \right) \left( \text{ cos } x - sin\alpha \right) \left( \text{ cos } x + sin\alpha \right)\]

\[ = 8\left( \cos^2 x - \cos^2 \alpha \right) \left( \cos^2 x - \sin^2 \alpha \right)\]

\[ = 8\left( \cos^4 x - \cos^2 x \times \sin^2 \alpha - \cos^2 \alpha \times \cos^2 x + \cos^2 \alpha \times \sin^2 \alpha \right)\]

\[ = 8\left\{ \cos^4 x - \cos^2 x\left( \sin^2 \alpha + \cos^2 \alpha \right) + \cos^2 \alpha \times \sin^2 \alpha \right\}\]

\[ = 8\left\{ \cos^4 x - \cos^2 x + \cos^2 \alpha \times \left( 1 - \cos^2 \alpha \right) \right\}\]

\[ = 8\left\{ \cos^4 x - \cos^2 x + \cos^2 \alpha - \cos^4 \alpha \right\}\]

\[ = 8\left\{ \cos^2 x\left( \cos^2 x - 1 \right) + \cos^2 \alpha \times \left( 1 - \cos^2 \alpha \right) \right\}\]

\[= 8\left\{ \frac{1}{2} \cos^2 x\left( 2 \cos^2 x - 2 \right) + \frac{1}{2} \cos^2 \alpha \times \left( 2 - 2 \cos^2 \alpha \right) \right\}\]

\[ = 8\left\{ \frac{1}{2} \cos^2 x\left( 2 \cos^2 x - 1 - 1 \right) - \frac{1}{2} \cos^2 \alpha \times \left( 2 \cos^2 \alpha - 1 - 1 \right) \right\}\]

\[ = 8\left\{ \frac{1}{2} \cos^2 x\left( \cos2x - 1 \right) - \frac{1}{2} \cos^2 \alpha \times \left( \cos2\alpha - 1 \right) \right\} \left( \because \cos2\alpha = 2 \cos^2 \alpha - 1 \right) \]

\[ = 8\left[ \frac{1}{4}\left\{ 2 \cos^2 x\left( \cos2x - 1 \right) - 2 \cos^2 \alpha \times \left( \cos2\alpha - 1 \right) \right\} \right]\]

\[ = 8\left[ \frac{1}{4}\left\{ \left( 1 + \cos2x \right)\left( \cos2x - 1 \right) - \left( 1 + \cos2\alpha \right)\left( \cos2\alpha - 1 \right) \right\} \right]\]

\[= 8\left[ \frac{1}{4}\left\{ \cos^2 2x - 1 - \cos^2 2\alpha + 1 \right\} \right]\]

\[ = 8\left[ \frac{1}{8}\left\{ 2 \cos^2 2x - 2 \cos^2 2\alpha \right\} \right]\]

\[ = \left[ \left\{ \left( 1 + \cos4x \right) - \left( 1 + \cos4\alpha \right) \right\} \right] \]

\[ = \left[ 1 + \cos4x - 1 - \cos4\alpha \right]\]

\[ = \cos4x - \cos4\alpha = LHS\]

\[\text{ Hence proved }  .\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 24 | पृष्ठ २८

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]

 

Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]

 

If \[2 \tan \alpha = 3 \tan \beta,\]  prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\] 

 


If  \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]

 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

Write the value of \[\cos^2 76°  + \cos^2 16°  - \cos 76° \cos 16°\] 

 

\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


\[\frac{\sin 5x}{\sin x}\]  is equal to

 


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×