मराठी

Prove That: ( Cos α + Cos β 2 ) + ( Sin α + Sin β ) 2 = 4 Cos 2 ( α − β 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: (cosα+cosβ2)+(sinα+sinβ)2=4cos2(αβ2)

 
संख्यात्मक

उत्तर

LHS=(cosα+cosβ)2+(sinα+sinβ)2

=cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ

=(cos2α+sin2α)+(cos2β+sin2β)+2(cosαcosβ+sinαsinβ)

=1+1+2cos(αβ)

=2{1+cos(αβ)}

=2{2cos2(αβ2)}

=4cos2(αβ2)=RHS

 Hence proved .

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.1 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.1 | Q 11 | पृष्ठ २८

संबंधित प्रश्‍न

Prove that:  cos2x1+sin2x=tan(π4x)

 

Prove that:  cosx1sinx=tan(π4+x2)


Prove that: (sin3x+sinx)sinx+(cos3xcosx)cosx=0


Prove that: sin4x=4sinxcos3x4cosxsin3x

 

Show that: 3(sinxcosx)4+6(sinx+cos)2+4(sin6x+cos6x)=13


Prove that: cos6Asin6A=cos2A(114sin22A)

 

 If  cosx=35  and x lies in IInd quadrant, find the values of sin 2x and sinx2 .

 

 


If  sinx=53 and x lies in IInd quadrant, find the values of cosx2,sinx2 and tanx2

 

 


If tanA=17  and tanB=13 , show that cos 2A = sin 4

 

 


Prove that:  cos7°cos14°cos28°cos56°=sin68°16cos83°

 

Prove that: cos2π15cos4π15cos8π15cos16π15=116


Prove that: cosπ65cos2π65cos4π65cos8π65cos16π65cos32π65=164

 

If 2tanα2=tanβ2 , prove that cosα=3+5cosβ5+3cosβ

 

 


If  sinα=45 and cosβ=513 , prove that cosαβ2=865

 

If acos2x+bsin2x=c  has α and β as its roots, then prove that

(iii)tan(α+β)=ba 

 


Prove that:  cos3xsin3x+sin3xcos3x=34sin4x

 

tanx+tan(π3+x)tan(π3x)=3tan3x 


Prove that: cosπ15cos2π15cos4π15cos7π15=116

 

Prove that: cos6°cos42°cos66°cos78°=116

 

Prove that : sinπ5sin2π5sin3π5sin4π5=516

 

If  π2<x<π, then write the value of 1cos2x1+cos2x .

 

 


Write the value of cos276°+cos216°cos76°cos16° 

 

Write the value of cosπ7cos2π7cos4π7.

  

If  tan A=1 cos B sin B

, then find the value of tan2A.

 

 


8sinx8cosx2cosx4cosx8  is equal to 

 


The value of cosπ65cos2π65cos4π65cos8π65cos16π65cos32π65  is 

  

sin2(π18)+sin2(π9)+sin2(7π18)+sin2(4π9)=


sin3x1+2cos2x   is equal to


If α and β are acute angles satisfying cos2α=3cos2β13cos2β , then tan α =

 

If  (2n+1)x=π, then 2ncosxcos2xcos22x...cos2n1x=1

 


The value of cos4x+sin4x6cos2xsin2x is 


The value of sin5αsin3αcos5α+2cos4α+cos3α=

 

sin5xsinx  is equal to

 


The value of cos248-sin212 is ______.


The value of 1-tan2151+tan215 is ______.


The value of sin50sin130 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.