Advertisements
Advertisements
प्रश्न
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
उत्तर
\[RHS = 8\left( \text{ cos } x - cos \alpha \right) \left( \text{ cos } x + cos\alpha \right) \left( \text{ cos } x - sin\alpha \right) \left( \text{ cos } x + sin\alpha \right)\]
\[ = 8\left( \cos^2 x - \cos^2 \alpha \right) \left( \cos^2 x - \sin^2 \alpha \right)\]
\[ = 8\left( \cos^4 x - \cos^2 x \times \sin^2 \alpha - \cos^2 \alpha \times \cos^2 x + \cos^2 \alpha \times \sin^2 \alpha \right)\]
\[ = 8\left\{ \cos^4 x - \cos^2 x\left( \sin^2 \alpha + \cos^2 \alpha \right) + \cos^2 \alpha \times \sin^2 \alpha \right\}\]
\[ = 8\left\{ \cos^4 x - \cos^2 x + \cos^2 \alpha \times \left( 1 - \cos^2 \alpha \right) \right\}\]
\[ = 8\left\{ \cos^4 x - \cos^2 x + \cos^2 \alpha - \cos^4 \alpha \right\}\]
\[ = 8\left\{ \cos^2 x\left( \cos^2 x - 1 \right) + \cos^2 \alpha \times \left( 1 - \cos^2 \alpha \right) \right\}\]
\[= 8\left\{ \frac{1}{2} \cos^2 x\left( 2 \cos^2 x - 2 \right) + \frac{1}{2} \cos^2 \alpha \times \left( 2 - 2 \cos^2 \alpha \right) \right\}\]
\[ = 8\left\{ \frac{1}{2} \cos^2 x\left( 2 \cos^2 x - 1 - 1 \right) - \frac{1}{2} \cos^2 \alpha \times \left( 2 \cos^2 \alpha - 1 - 1 \right) \right\}\]
\[ = 8\left\{ \frac{1}{2} \cos^2 x\left( \cos2x - 1 \right) - \frac{1}{2} \cos^2 \alpha \times \left( \cos2\alpha - 1 \right) \right\} \left( \because \cos2\alpha = 2 \cos^2 \alpha - 1 \right) \]
\[ = 8\left[ \frac{1}{4}\left\{ 2 \cos^2 x\left( \cos2x - 1 \right) - 2 \cos^2 \alpha \times \left( \cos2\alpha - 1 \right) \right\} \right]\]
\[ = 8\left[ \frac{1}{4}\left\{ \left( 1 + \cos2x \right)\left( \cos2x - 1 \right) - \left( 1 + \cos2\alpha \right)\left( \cos2\alpha - 1 \right) \right\} \right]\]
\[= 8\left[ \frac{1}{4}\left\{ \cos^2 2x - 1 - \cos^2 2\alpha + 1 \right\} \right]\]
\[ = 8\left[ \frac{1}{8}\left\{ 2 \cos^2 2x - 2 \cos^2 2\alpha \right\} \right]\]
\[ = \left[ \left\{ \left( 1 + \cos4x \right) - \left( 1 + \cos4\alpha \right) \right\} \right] \]
\[ = \left[ 1 + \cos4x - 1 - \cos4\alpha \right]\]
\[ = \cos4x - \cos4\alpha = LHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.