Advertisements
Advertisements
प्रश्न
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
उत्तर
\[LHS = \sin3x + \sin2x - \text{ sin } x\]
\[ = \sin3x + 2\sin\left( \frac{2x - x}{2} \right)\cos\left( \frac{2x + x}{2} \right) \left[ \because \text{ sin } A - \text{ sin } B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ = \sin3x + 2\sin\left( \frac{x}{2} \right)\cos\left( \frac{3x}{2} \right)\]
\[ = 2\sin\left( \frac{3x}{2} \right)\cos\left( \frac{3x}{2} \right) + 2\sin\left( \frac{3x}{2} \right)\cos\frac{x}{2} \left[ \because \sin2A = 2\text{ sin } A\text{ cos } A \right]\]
\[ = 2\cos\left( \frac{3x}{2} \right)\left[ \sin\left( \frac{3x}{2} \right)\cos\left( \frac{x}{2} \right) \right]\]
\[ = 2\cos\left( \frac{3x}{2} \right)\left[ 2\sin\left( \frac{\frac{3x}{2} + \frac{x}{2}}{2} \right)\cos\left( \frac{\frac{3x}{2} - \frac{x}{2}}{2} \right) \right] \left[ \because \text{ sin } A + \text{ sin } B = 2\sin\left( \frac{A + B}{2} \right)\cos\left( \frac{A - B}{2} \right) \right]\]
\[ = 2\cos\left( \frac{3x}{2} \right)\left[ 2\sin\left( x \right)\cos\left( \frac{x}{2} \right) \right]\]
\[ = 4\sin\left( x \right)\cos\left( \frac{x}{2} \right)\cos\left( \frac{3x}{2} \right) = RHS\]
\[\text{ Hence proved } . \]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
The greatest value of sin x cos x is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of `(sin 50^circ)/(sin 130^circ)` is ______.