मराठी

If k = sin(π18)sin(5π18)sin(7π18), then the numerical value of k is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.

रिकाम्या जागा भरा

उत्तर

If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is `underlinebb(1/8)`.

Explanation:

Given that: k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`

⇒ k = sin10°. sin50°. sin70°

⇒ k = sin10° sin(90° – 40°) sin(90° – 20°)

⇒ k = sin10° cos40° cos20°

⇒ k = `sin10^circ . 1/2 [2 cos 40^circ cos 20^circ]`

⇒ k = `sin 10^circ . 1/2 [cos(40^circ + 20^circ) + cos(40^circ - 20^circ)]`

⇒ k = `1/2 sin 10^circ [cos 60^circ +  cos 20^circ]`

⇒ k = `1/2 sin 10^circ(1/2 + cos 20^circ)`

⇒ k = `1/4 sin 10^circ + 1/2 sin 10^circ . cos 20^circ`

⇒ k = `1/4 sin 10^circ + 1/4(2 sin 10^circ cos 20^circ)`

⇒ k = `1/4 sin 10^circ + 1/4[sin(10^circ + 20^circ) + sin(10^circ - 20^circ)]`

⇒ k = `1/4 sin 10^circ + 1/4[sin30^circ + sin(-10^circ)]`

⇒ k = `1/4 sin 10^circ + 1/4 sin 30^circ - 1/4 sin 10^circ`

= `1/4 sin 30^circ`

= `1/4 xx 1/2`

= `1/8`

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 61 | पृष्ठ ५९

संबंधित प्रश्‍न

Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]

 

 


If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that

(ii)  \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]

 


Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] . 

 

Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×