Advertisements
Advertisements
प्रश्न
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
उत्तर
Given that: tan(A + B) = p, tan(A – B) = q
tan 2A = tan(A + B + A – B)
= tan[(A + B) + (A – B)]
= `(tan(A + B) + tan(A - B))/(1 - tan(A + B).tan(A - B))`
= `(p + q)/(1 - pq)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The greatest value of sin x cos x is ______.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]