मराठी

If Tan X 2 = √ 1 − E 1 + E Tan α 2 , Then Cos α = - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]

पर्याय

  • \[1 - e \cos \left( \cos x + e \right)\]

  • \[\frac{1 + e \cos x}{\cos x - e}\]

  • \[\frac{1 - e \cos x}{\cos x - e}\]

  • \[\frac{\cos x - e}{1 - e \cos x}\]

MCQ

उत्तर

\[\frac{\cos x - e}{1 - e \cos x}\]

\[\text { Given } : \tan\frac{x}{2} = \sqrt{\frac{1 - e}{1 + e}}\tan\frac{\alpha}{2}\]

\[ \Rightarrow \frac{\tan\frac{x}{2}}{\tan\frac{\alpha}{2}} = \sqrt{\frac{1 - e}{1 + e}}\]

\[\text{ Squaring both sides, we get, }  \]

\[\frac{\tan^2 \frac{x}{2}}{\tan^2 \frac{\alpha}{2}} = \frac{1 - e}{1 + e}\]

\[ \Rightarrow \tan^2 \frac{\alpha}{2}\left( 1 - e \right) = \tan^2 \frac{x}{2}\left( 1 + e \right)\]

\[\Rightarrow \frac{\sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2}}\left( 1 - e \right) = \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}\left( 1 + e \right)\]

\[ \Rightarrow \frac{\frac{1}{2}\left( 1 - cos\alpha \right)}{\frac{1}{2}\left( 1 + cos\alpha \right)}\left( 1 - e \right) = \frac{\frac{1}{2}\left( 1 - \text{ cos } x \right)}{\frac{1}{2}\left( 1 + \text{ cos } x \right)}\left( 1 + e \right)\]

\[ \Rightarrow \left( 1 - cos\alpha \right)\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 + cos\alpha \right)\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - cos\alpha\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 - \text{ cos } x \right)\left( 1 + e \right) + cos\alpha\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow cos\alpha\left\{ \left( 1 + \text{ cos } x \right)\left( 1 - e \right) + \left( 1 - \text{ cos } x \right)\left( 1 + e \right) \right\} = \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - \left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow cos\alpha = \frac{2\text{ cos } x - 2e}{2 - 2ecosx} = \frac{\text{ cos } x - e}{1 - ecosx}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 26 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]


Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If 0 ≤ x ≤ π and x lies in the IInd quadrant such that  \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan\frac{x}{2}\]

 

 


If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]

 

Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]

, then find the value of tan2A.

 

 


If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


\[8 \sin\frac{x}{8} \cos \frac{x}{2}\cos\frac{x}{4} \cos\frac{x}{8}\]  is equal to 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

The value of sin 20° sin 40° sin 60° sin 80° is ______.


If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


The value of sin50° – sin70° + sin10° is equal to ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×