Advertisements
Advertisements
प्रश्न
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
पर्याय
\[1 - e \cos \left( \cos x + e \right)\]
\[\frac{1 + e \cos x}{\cos x - e}\]
\[\frac{1 - e \cos x}{\cos x - e}\]
\[\frac{\cos x - e}{1 - e \cos x}\]
उत्तर
\[\frac{\cos x - e}{1 - e \cos x}\]
\[\text { Given } : \tan\frac{x}{2} = \sqrt{\frac{1 - e}{1 + e}}\tan\frac{\alpha}{2}\]
\[ \Rightarrow \frac{\tan\frac{x}{2}}{\tan\frac{\alpha}{2}} = \sqrt{\frac{1 - e}{1 + e}}\]
\[\text{ Squaring both sides, we get, } \]
\[\frac{\tan^2 \frac{x}{2}}{\tan^2 \frac{\alpha}{2}} = \frac{1 - e}{1 + e}\]
\[ \Rightarrow \tan^2 \frac{\alpha}{2}\left( 1 - e \right) = \tan^2 \frac{x}{2}\left( 1 + e \right)\]
\[\Rightarrow \frac{\sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2}}\left( 1 - e \right) = \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}\left( 1 + e \right)\]
\[ \Rightarrow \frac{\frac{1}{2}\left( 1 - cos\alpha \right)}{\frac{1}{2}\left( 1 + cos\alpha \right)}\left( 1 - e \right) = \frac{\frac{1}{2}\left( 1 - \text{ cos } x \right)}{\frac{1}{2}\left( 1 + \text{ cos } x \right)}\left( 1 + e \right)\]
\[ \Rightarrow \left( 1 - cos\alpha \right)\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 + cos\alpha \right)\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]
\[ \Rightarrow \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - cos\alpha\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 - \text{ cos } x \right)\left( 1 + e \right) + cos\alpha\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]
\[ \Rightarrow cos\alpha\left\{ \left( 1 + \text{ cos } x \right)\left( 1 - e \right) + \left( 1 - \text{ cos } x \right)\left( 1 + e \right) \right\} = \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - \left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]
\[ \Rightarrow cos\alpha = \frac{2\text{ cos } x - 2e}{2 - 2ecosx} = \frac{\text{ cos } x - e}{1 - ecosx}\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
The value of sin50° – sin70° + sin10° is equal to ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]