English

If Tan X 2 = √ 1 − E 1 + E Tan α 2 , Then Cos α = - Mathematics

Advertisements
Advertisements

Question

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]

Options

  • \[1 - e \cos \left( \cos x + e \right)\]

  • \[\frac{1 + e \cos x}{\cos x - e}\]

  • \[\frac{1 - e \cos x}{\cos x - e}\]

  • \[\frac{\cos x - e}{1 - e \cos x}\]

MCQ

Solution

\[\frac{\cos x - e}{1 - e \cos x}\]

\[\text { Given } : \tan\frac{x}{2} = \sqrt{\frac{1 - e}{1 + e}}\tan\frac{\alpha}{2}\]

\[ \Rightarrow \frac{\tan\frac{x}{2}}{\tan\frac{\alpha}{2}} = \sqrt{\frac{1 - e}{1 + e}}\]

\[\text{ Squaring both sides, we get, }  \]

\[\frac{\tan^2 \frac{x}{2}}{\tan^2 \frac{\alpha}{2}} = \frac{1 - e}{1 + e}\]

\[ \Rightarrow \tan^2 \frac{\alpha}{2}\left( 1 - e \right) = \tan^2 \frac{x}{2}\left( 1 + e \right)\]

\[\Rightarrow \frac{\sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2}}\left( 1 - e \right) = \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}\left( 1 + e \right)\]

\[ \Rightarrow \frac{\frac{1}{2}\left( 1 - cos\alpha \right)}{\frac{1}{2}\left( 1 + cos\alpha \right)}\left( 1 - e \right) = \frac{\frac{1}{2}\left( 1 - \text{ cos } x \right)}{\frac{1}{2}\left( 1 + \text{ cos } x \right)}\left( 1 + e \right)\]

\[ \Rightarrow \left( 1 - cos\alpha \right)\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 + cos\alpha \right)\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - cos\alpha\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 - \text{ cos } x \right)\left( 1 + e \right) + cos\alpha\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow cos\alpha\left\{ \left( 1 + \text{ cos } x \right)\left( 1 - e \right) + \left( 1 - \text{ cos } x \right)\left( 1 + e \right) \right\} = \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - \left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]

\[ \Rightarrow cos\alpha = \frac{2\text{ cos } x - 2e}{2 - 2ecosx} = \frac{\text{ cos } x - e}{1 - ecosx}\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 26 | Page 44

RELATED QUESTIONS

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x  \text{ cosec }  2 x\]

 

Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]


Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


Prove that:  \[\cos 7°  \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]

 

Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha + \cos \beta = b\] , prove that

(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]

 


If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


If  \[\sin \alpha = \frac{4}{5} \text{ and }  \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]

 

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78°  = \frac{1}{16}\]

 

If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


If  \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .

 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


If \[\sin \alpha + \sin \beta = a \text{ and }  \cos \alpha - \cos \beta = b \text{ then }  \tan \frac{\alpha - \beta}{2} =\]

 


If  \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\]  is equal to

 

\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\]  is equal to

   

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]

 


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


The value of sin50° – sin70° + sin10° is equal to ______.


If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×