Advertisements
Advertisements
Question
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
Options
\[1 - e \cos \left( \cos x + e \right)\]
\[\frac{1 + e \cos x}{\cos x - e}\]
\[\frac{1 - e \cos x}{\cos x - e}\]
\[\frac{\cos x - e}{1 - e \cos x}\]
Solution
\[\frac{\cos x - e}{1 - e \cos x}\]
\[\text { Given } : \tan\frac{x}{2} = \sqrt{\frac{1 - e}{1 + e}}\tan\frac{\alpha}{2}\]
\[ \Rightarrow \frac{\tan\frac{x}{2}}{\tan\frac{\alpha}{2}} = \sqrt{\frac{1 - e}{1 + e}}\]
\[\text{ Squaring both sides, we get, } \]
\[\frac{\tan^2 \frac{x}{2}}{\tan^2 \frac{\alpha}{2}} = \frac{1 - e}{1 + e}\]
\[ \Rightarrow \tan^2 \frac{\alpha}{2}\left( 1 - e \right) = \tan^2 \frac{x}{2}\left( 1 + e \right)\]
\[\Rightarrow \frac{\sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2}}\left( 1 - e \right) = \frac{\sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2}}\left( 1 + e \right)\]
\[ \Rightarrow \frac{\frac{1}{2}\left( 1 - cos\alpha \right)}{\frac{1}{2}\left( 1 + cos\alpha \right)}\left( 1 - e \right) = \frac{\frac{1}{2}\left( 1 - \text{ cos } x \right)}{\frac{1}{2}\left( 1 + \text{ cos } x \right)}\left( 1 + e \right)\]
\[ \Rightarrow \left( 1 - cos\alpha \right)\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 + cos\alpha \right)\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]
\[ \Rightarrow \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - cos\alpha\left( 1 + \text{ cos } x \right)\left( 1 - e \right) = \left( 1 - \text{ cos } x \right)\left( 1 + e \right) + cos\alpha\left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]
\[ \Rightarrow cos\alpha\left\{ \left( 1 + \text{ cos } x \right)\left( 1 - e \right) + \left( 1 - \text{ cos } x \right)\left( 1 + e \right) \right\} = \left( 1 + \text{ cos } x \right)\left( 1 - e \right) - \left( 1 - \text{ cos } x \right)\left( 1 + e \right)\]
\[ \Rightarrow cos\alpha = \frac{2\text{ cos } x - 2e}{2 - 2ecosx} = \frac{\text{ cos } x - e}{1 - ecosx}\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
The value of sin50° – sin70° + sin10° is equal to ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]