English

Sec 8 a − 1 Sec 4 a − 1 = - Mathematics

Advertisements
Advertisements

Question

\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 

Options

  • \[\frac{\tan 2A}{\tan 8A}\]

     

  • \[\frac{\tan 8A}{\tan 2A}\]

     

  • \[\frac{\cot 8A}{\cot 2A}\]

     

  • none of these.

     
MCQ

Solution

\[\frac{\tan 8A}{\tan 2A}\] 

\[\text{ We have } , \]
\[\frac{\sec8A - 1}{\sec4A - 1} = \frac{\frac{1}{\cos8A} - 1}{\frac{1}{\cos4A} - 1}\]
\[ = \frac{\cos4A}{\cos8A} \times \frac{1 - \cos8A}{1 - \cos4A}\]
\[= \frac{\cos4A}{\cos8A} \times \frac{2 \sin^2 4A}{2 \sin^2 2A} \left( 2 \sin^2 \theta = 1 - \cos2\theta \right)\]
\[ = \frac{\left( 2\cos4A \sin4A \right) \sin4A}{2 \times \cos8A \sin^2 2A}\]
\[ = \frac{\sin8A \sin4A}{\cos8A \times 2\sin2A \times \sin2A}\]
\[ = \tan8A \times \frac{2\sin2A \times \cos2A}{2\sin2A \times \sin2A}\]
\[ = \tan8A \times \cot2A\]
\[ = \frac{\tan8A}{\tan2A}\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 2 | Page 43

RELATED QUESTIONS

Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that:  \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]

 

Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]


\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]

 

If \[\cos \alpha + \cos \beta = \frac{1}{3}\]  and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]

 
 

 


Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

Prove that:  \[\cos 78°  \cos 42°  \cos 36° = \frac{1}{8}\]


If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.

 

 


If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.

 
 

If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] . 

 

In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.

 

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If  \[2 \tan \alpha = 3 \tan \beta, \text{ then }  \tan \left( \alpha - \beta \right) =\]

 


\[2 \text{ cos } x - \ cos  3x - \cos 5x - 16 \cos^3 x \sin^2 x\]


The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If  \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]

 


The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]

 

 


The greatest value of sin x cos x is ______.


The value of sin 20° sin 40° sin 60° sin 80° is ______.


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.


If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


The value of `(sin 50^circ)/(sin 130^circ)` is ______.


If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×