Advertisements
Advertisements
Question
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
Options
a
b
- \[\frac{a}{b}\]
- \[\frac{b}{a}\]
Solution
Given: \[\text{ tan } x = \frac{a}{b}\]
Now,
\[b \cos2x + a \sin2x\]
\[ = b \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) + a\left( \frac{2\text{ tan } x}{1 + \tan^2 x} \right)\]
\[ = b\left( \frac{1 - \frac{a^2}{b^2}}{1 + \frac{a^2}{b^2}} \right) + a\left( \frac{2 \times \frac{a}{b}}{1 + \frac{a^2}{b^2}} \right)\]
\[ = \frac{b\left( b^2 - a^2 \right)}{a^2 + b^2} + \frac{2 a^2 b}{a^2 + b^2}\]
\[= \frac{b^3 - a^2 b + 2 a^2 b}{a^2 + b^2}\]
\[ = \frac{b^3 + a^2 b}{a^2 + b^2}\]
\[ = \frac{b\left( b^2 + a^2 \right)}{a^2 + b^2}\]
\[ = b\]
Hence, the correct answer is option B.
Given:
\[ = b \left( \frac{1 - \tan^2 x}{1 + \tan^2 x} \right) + a\left( \frac{2\text{ tan } x}{1 + \tan^2 x} \right)\]
\[ = b\left( \frac{1 - \frac{a^2}{b^2}}{1 + \frac{a^2}{b^2}} \right) + a\left( \frac{2 \times \frac{a}{b}}{1 + \frac{a^2}{b^2}} \right)\]
\[ = \frac{b\left( b^2 - a^2 \right)}{a^2 + b^2} + \frac{2 a^2 b}{a^2 + b^2}\]
\[= \frac{b^3 - a^2 b + 2 a^2 b}{a^2 + b^2}\]
\[ = \frac{b^3 + a^2 b}{a^2 + b^2}\]
\[ = \frac{b\left( b^2 + a^2 \right)}{a^2 + b^2}\]
\[ = b\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The greatest value of sin x cos x is ______.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`