English

sin 5 x sin x is equal to - Mathematics

Advertisements
Advertisements

Question

\[\frac{\sin 5x}{\sin x}\]  is equal to

 

Options

  • \[16 \cos^4 x - 12 \cos^2 x + 1\]

     

  • \[16 \cos^4 x + 12 \cos^2 x + 1\]

     

  • \[16 \cos^4 x - 12 \cos^2 x - 1\]

     

  • \[16 \cos^4 x + 12 \cos^2 x - 1\]

     

MCQ

Solution

\[\text{ To find } : \frac{\sin 5x}{\text{ sin } x}\]
\[\text{ Now} , \]
\[\sin5x = \sin\left( 3x + 2x \right)\]
\[ = \sin3x\cos2x + \cos3x\sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 1 - 2 \sin^2 x \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right)\left( 2\text{ sin } x\text{ cos } x \right)\]
\[ = \left( 3\sin x - 6 \sin^3 x - 4 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x \cos^2 x\left( 4 \cos^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x\left( 1 - \sin^2 x \right)\left[ 4\left( 1 - \sin^2 x \right) - 3 \right]\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 2 \sin^3 x \right)\left( 4 - 4 \sin^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 8 \sin^3 x - 2 \sin^3 x + 8 \sin^5 x \right)\]
\[ = 5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x\]
\[ \therefore \frac{\sin 5x}{\text{ sin } x} = \frac{5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x}{\text{ sin } x} \]
\[ = 5 - 20 \sin^2 x + 16 \sin^4 x \]
\[ = 5 - 20\left( 1 - \cos^2 x \right) + 16 \left( 1 - \cos^2 x \right)^2 \]
\[ = 5 - 20 + 20 \cos^2 x + 16\left( 1 + \cos^4 x - 2 \cos^2 x \right)\]
\[ = 5 - 20 + 20 \cos^2 x + 16 + 16 \cos^4 x - 32 \cos^2 x\]
\[ = 16 \cos^4 x - 12 \cos^2 x + 1\]

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 34 | Page 45

RELATED QUESTIONS

Prove that:  \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]


Prove that:  \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]

 

Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]


Prove that:  \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]

 


Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]

 

 If  \[\cos x = - \frac{3}{5}\]  and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .

 

 


 If \[\cos x = \frac{4}{5}\]  and x is acute, find tan 2

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\] 


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{\pi}{3} - x \right) = 3 \cot 3x\]

 


\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\] 


\[\sin 5x = 5 \cos^4 x \sin x - 10 \cos^2 x \sin^3 x + \sin^5 x\]

 


Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\]  for all values of x

 
 

Prove that:  \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\] 

 

Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]

 

If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] . 

 

If  \[\text{ sin } x + \text{ cos } x = a\], then find the value of

\[\sin^6 x + \cos^6 x\] .
 

 


\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is 

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval


If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]


The value of  \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is 


The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

If \[n = 1, 2, 3, . . . , \text{ then }  \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to

 


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.


The value of cos12° + cos84° + cos156° + cos132° is ______.


If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.


The value of cos248° – sin212° is ______.

[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×