Advertisements
Advertisements
Question
Options
- \[16 \cos^4 x - 12 \cos^2 x + 1\]
- \[16 \cos^4 x + 12 \cos^2 x + 1\]
- \[16 \cos^4 x - 12 \cos^2 x - 1\]
- \[16 \cos^4 x + 12 \cos^2 x - 1\]
Solution
\[\text{ To find } : \frac{\sin 5x}{\text{ sin } x}\]
\[\text{ Now} , \]
\[\sin5x = \sin\left( 3x + 2x \right)\]
\[ = \sin3x\cos2x + \cos3x\sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 1 - 2 \sin^2 x \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right)\left( 2\text{ sin } x\text{ cos } x \right)\]
\[ = \left( 3\sin x - 6 \sin^3 x - 4 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x \cos^2 x\left( 4 \cos^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + 2\text{ sin } x\left( 1 - \sin^2 x \right)\left[ 4\left( 1 - \sin^2 x \right) - 3 \right]\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 2 \sin^3 x \right)\left( 4 - 4 \sin^2 x - 3 \right)\]
\[ = \left( 3\sin x - 10 \sin^3 x + 8 \sin^5 x \right) + \left( 2\text{ sin } x - 8 \sin^3 x - 2 \sin^3 x + 8 \sin^5 x \right)\]
\[ = 5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x\]
\[ \therefore \frac{\sin 5x}{\text{ sin } x} = \frac{5\text{ sin } x - 20 \sin^3 x + 16 \sin^5 x}{\text{ sin } x} \]
\[ = 5 - 20 \sin^2 x + 16 \sin^4 x \]
\[ = 5 - 20\left( 1 - \cos^2 x \right) + 16 \left( 1 - \cos^2 x \right)^2 \]
\[ = 5 - 20 + 20 \cos^2 x + 16\left( 1 + \cos^4 x - 2 \cos^2 x \right)\]
\[ = 5 - 20 + 20 \cos^2 x + 16 + 16 \cos^4 x - 32 \cos^2 x\]
\[ = 16 \cos^4 x - 12 \cos^2 x + 1\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
\[\tan x + \tan\left( \frac{\pi}{3} + x \right) - \tan\left( \frac{\pi}{3} - x \right) = 3 \tan 3x\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]