Advertisements
Advertisements
Question
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
Options
3
4
1
2
Solution
2
\[\text{ Given } : \]
\[ \tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = \lambda \sec 2x\]
\[ \Rightarrow \frac{\tan\frac{\pi}{4} + \text{ tan } x}{1 - \tan\frac{\pi}{4} \times \text{ tan } x} + \frac{\tan\frac{\pi}{4} - \text{ tan } x}{1 + \tan\frac{\pi}{4} \times \text{ tan } x} = \lambda \sec 2x\]
\[ \Rightarrow \frac{1 + \text{ tan } x}{1 - \text{ tan } x} + \frac{1 - \text{ tan } x}{1 + \text{ tan } x} = \lambda \sec 2x\]
\[ \Rightarrow \frac{\left( 1 + \text{ tan } x \right)^2 + \left( 1 - \text{ tan } x \right)^2}{\left( 1 - \text{ tan } x \right)\left( 1 + \text{ tan } x \right)} = \lambda \sec 2x\]
\[ \Rightarrow \frac{2\left( 1 + \tan^2 x \right)}{1 - \tan^2 x} = \lambda \sec 2x\]
\[\Rightarrow \frac{2 \sec^2 x}{1 - \tan^2 x} = \lambda \sec 2x\]
\[ \Rightarrow \frac{2}{\cos^2 x\left( 1 - \tan^2 x \right)} = \lambda \sec 2x\]
\[ \Rightarrow \frac{2}{\cos^2 x\left( 1 - \frac{\sin^2 x}{\cos^2 x} \right)} = \lambda \sec 2x\]
\[ \Rightarrow \frac{2}{\cos^2 x - \sin^2 x} = \lambda \sec 2x\]
\[ \Rightarrow \frac{2}{\cos2x} = \lambda \sec 2x\]
\[ \Rightarrow 2\sec2x = \lambda \sec 2x\]
\[ \Rightarrow 2 = \lambda\]
\[ \therefore \lambda = 2\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos\frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(i)\[\sin \left( \alpha + \beta \right) = \frac{2ab}{a^2 + b^2}\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
In a right angled triangle ABC, write the value of sin2 A + Sin2 B + Sin2 C.
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
If \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If \[\text{ tan } x = \frac{a}{b}\], then \[b \cos 2x + a \sin 2x\]
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of sin50° – sin70° + sin10° is equal to ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.