English

Prove that: cos 78 ° cos 42 ° cos 36 ° = 1 8 - Mathematics

Advertisements
Advertisements

Question

Prove that:  cos78°cos42°cos36°=18

Numerical

Solution

LHS=cos78°cos42°cos36°
=(2cos78°cos42°)2cos36°
=cos(78°+42°)+cos(78°42°)2×cos36°
[2 cos A cos B=cos(A+B)+cos(AB)]
=12(cos120°+cos36°)cos36°

=12(cos(180°120°)+cos36°)cos36°
=12(cos60°+cos36°)cos36°
=12(12+5+14)5+14
=12×514×5+14
=18
=RHS
 Hence proved .

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.3 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.3 | Q 4 | Page 42

RELATED QUESTIONS

Prove that:  sin2x1cos2x=cotx


Prove that:  cosx1sinx=tan(π4+x2)


Prove that: (cosα+cosβ2)+(sinα+sinβ)2=4cos2(αβ2)

 

Prove that: 1+cos22x=2(cos4x+sin4x)

 

Prove that: cos32x+3cos2x=4(cos6xsin6x)


Prove that:  cos4x=18cos2x+8cos4x

 


Show that: 2(sin6x+cos6x)3(sin4x+cos4x)+1=0

 

Prove that: cos4xcos4α=8(cosxcosα)(cosx+cosα)(cosxsinα)(cosx+sinα)


Prove that sin3x+sin2xsinx=4sinxcosx2cos3x2


Prove that: cotπ8=2+1

 

If  sinx=53 and x lies in IInd quadrant, find the values of cosx2,sinx2 and tanx2

 

 


If  tan x=ba , then find the value of a+bab+aba+b

 

 


If 2tanα2=tanβ2 , prove that cosα=3+5cosβ5+3cosβ

 

 


If cosx=cosα+cosβ1+cosαcosβ , prove that tanx2=±tanα2tanβ2

 

If  sec(x+α)+sec(xα)=2secx , prove that cosx=±2cosα2

 

Prove that:  sin5x=5sinx20sin3x+16sin5x

 

Prove that |sinxsin(π3x)sin(π3+x)|14  for all values of x

 
 

Prove that: sin224°sin26°=518

  

Prove that: cosπ15cos2π15cos4π15cos7π15=116

 

Prove that: cos36°cos42°cos60°cos78°=116

 

Prove that: cosπ15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15=1128

 

Write the value of cos276°+cos216°cos76°cos16° 

 

sec8A1sec4A1=

 


The value of  2tanπ10+3secπ104cosπ10 is 

 

If in a  ABC,tanA+tanB+tanC=0, then

cotAcotBcotC=
 

 


If sinα+sinβ=a and cosαcosβ=b then tanαβ2=

 


The value of tanxsin(π2+x)cos(π2x)

 

The value of  2sin2B+4cos(A+B)sinAsinB+cos2(A+B) is 


The value of cos(36°A)cos(36°+A)+cos(54°A)cos(54°+A) is 

 

The value of sin5αsin3αcos5α+2cos4α+cos3α=

 

If  tan x=ab, then bcos2x+asin2x

 

 


If tanα=17,tanβ=13, then

cos2α   is equal to

 

If A = cos2θ + sin4θ for all values of θ, then prove that 34 ≤ A ≤ 1.


The greatest value of sin x cos x is ______.


If θ lies in the first quadrant and cosθ = 817, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


Find the value of the expression cos4 π8+cos4 3π8+cos4 5π8+cos4 7π8

[Hint: Simplify the expression to 2(cos4 π8+cos4 3π8)=2[(cos2 π8+cos2 3π8)2-2cos2 π8cos2 3π8]


The value of cos12° + cos84° + cos156° + cos132° is ______.


If sinθ = -45 and θ lies in the third quadrant then the value of cos θ2 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.