English

Prove That: Cos π 15 Cos 2 π 15 Cos 4 π 15 Cos 7 π 15 = 1 16 - Mathematics

Advertisements
Advertisements

Question

Prove that: cosπ15cos2π15cos4π15cos7π15=116

 
Numerical

Solution

LHS=cosπ15cos2π15cos4π15cos7π15

=2sinπ15cosπ152sinπ15cos2π15cos4π15cos7π15
[ On dividing and multiplying by 2sinπ15]

=2sin2π15×cos2π152×2sinπ15cos4π15cos7π15
=2sin4π15×cos4π152×2×2sinπ15cos7π15
=sin8π152×2×2sinπ15cos7π15

=2sin8π15cos7π152×2×2×2sinπ15
=2sin8π15cos7π1516sinπ15
=sin(8π15+7π15)+sin(8π157π15)16sinπ15[2 sin A cos B=sin(A+B)+sin(AB)]
=sinπ+sinπ1516sinπ15
=0+sinπ1516sinπ15
=sinπ1516sinπ15
=116
=RHS
Hence proved.
 

 

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  Is there an error in this question or solution?
Chapter 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.3 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.3 | Q 5 | Page 42

RELATED QUESTIONS

Prove that:  sin2x1+cos2x=tanx

 

Prove that:  sinx+sin2x1+cosx+cos2x=tanx

 

Prove that:  cos2x1+sin2x=tan(π4x)

 

Prove that: cos2π8+cos23π8+cos25π8+cos27π8=2


 If cosx=35  and x lies in the IIIrd quadrant, find the values of cosx2,sinx2,sin2x .

 

 


 If sinx=45 and 0<x<π2

, find the value of sin 4x.

 

 


If tanA=17  and tanB=13 , show that cos 2A = sin 4

 

 


Prove that: cosπ65cos2π65cos4π65cos8π65cos16π65cos32π65=164

 

If sinα+sinβ=a and cosα+cosβ=b , prove that 
(i)sin(α+β)=2aba2+b2


If cosx=cosα+cosβ1+cosαcosβ , prove that tanx2=±tanα2tanβ2

 

If cosα+cosβ=13  and sin sinα+sinβ=14 , prove that cosαβ2=±524

 
 

 


If acos2x+bsin2x=c  has α and β as its roots, then prove that

(iii)tan(α+β)=ba 

 


Prove that tanx+tan(π3+x)-tan(π3-x)=3tan3x


sin5x=5cos4xsinx10cos2xsin3x+sin5x

 


Prove that: sin22π5sin2π3=518

  

Prove that:  sin242°cos278=5+18 

 

Prove that: cos6°cos42°cos66°cos78°=116

 

If π2<x<π, the write the value of 2+2+2cos2x in the simplest form.

 
 

If π<x<3π2, then write the value of 1cos2x1+cos2x

 

If   sin x+ cos x=a, then find the value of

sin6x+cos6x .
 

 


8sinx8cosx2cosx4cosx8  is equal to 

 


The value of cosπ65cos2π65cos4π65cos8π65cos16π65cos32π65  is 

  

If sinα+sinβ=a and cosαcosβ=b then tanαβ2=

 


The value of (cotx2tanx2)2(12tanxcot2x) is 

 

sin2(π18)+sin2(π9)+sin2(7π18)+sin2(4π9)=


2 cos x cos3xcos5x16cos3xsin2x


sin3x1+2cos2x   is equal to


The value of  2sin2B+4cos(A+B)sinAsinB+cos2(A+B) is 


If  (2n+1)x=π, then 2ncosxcos2xcos22x...cos2n1x=1

 


If tanx=t then tan2x+sec2x=

 


The value of cos(36°A)cos(36°+A)+cos(54°A)cos(54°+A) is 

 

If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]


If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = p+q1-pq


If θ lies in the first quadrant and cosθ = 817, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.