Advertisements
Advertisements
Question
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
Options
0
cos 3A
cos 2A
none of these
Solution
cos 2A
\[\text{ We have, } \]
\[2 \sin^2 B + 4\cos\left( A + B \right) \text{ sin } A \text{ sin } B + \cos2\left( A + B \right)\]
\[ = 1 - \cos2B + \cos2\left( A + B \right) + 4\cos\left( A + B \right) \text{ sin } A \text{ sin } B\]
\[ = 1 + \left( \cos2\left( A + B \right) - \cos2B \right) + 4\cos\left( A + B \right) \text{ sin } A \text{ sin } B\]
\[ = 1 - 2\text{ sin } A\sin\left( A + 2B \right) + 4\cos\left( A + B \right) \text{ sin } A \text{ sin } B\]
\[ \left[ \because \text{ cos } C - \text{ cos } D = - 2\sin\frac{C + D}{2}\sin\frac{C - D}{2} \right]\]
\[ = 1 - 2\text{ sin } A\left[ \sin\left( A + 2B \right) - 2\text{ sin } B\cos\left( A + B \right) \right]\]
\[ = 1 - 2\text{ sin } A\left[ \sin\left( A + 2B \right) - \left\{ \sin\left( B + A + B \right) + \sin\left( B - \left( A + B \right) \right) \right\} \right] \]
\[ \left[ \because 2\text{ sin } C\text{ cos } D = \sin\left( C + D \right) + \sin\left( C - D \right) \right]\]
\[ = 1 - 2\text{ sin } A\left[ \sin\left( A + 2B \right) - \left\{ \sin\left( A + 2B \right) + \sin\left( - A \right) \right\} \right]\]
\[ = 1 - 2\text{ sin } A\left[ \text{ sin } A \right]\]
\[ = 1 - 2 \sin^2 A\]
\[ = \cos2A\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Prove that: \[\sin^2 42° - \cos^2 78 = \frac{\sqrt{5} + 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
The value of \[\frac{\cos 3x}{2 \cos 2x - 1}\] is equal to
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
The greatest value of sin x cos x is ______.
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.