Advertisements
Advertisements
Question
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Solution
Let us consider the RHS
4(cos6 x – sin6 x)
Now, upon expansion we get,
4(cos6 x – sin6 x) = 4[(cos2 x)3 – (sin2 x)3]
= 4(cos2 x – sin2 x) (cos4 x + sin4 x + cos2 x sin2 x)
On using the formula,
a3 – b3 = (a - b) (a2 + b2 + ab)
= 4 cos 2x (cos4 x + sin4 x + cos2 x sin2 x + cos2 x sin2 x – cos2 x sin
As we know, cos 2x = cos2 x – sin2 x
Therefore,
= 4 cos 2x (cos4 x + sin4 x + 2 cos2 x sin2 x – cos2 x sin2 x)
= 4 cos 2x [(cos2 x)2 + (sin2 x)2 + 2 cos2 x sin2 x – cos2 x sin2 x]
As we know, a2 + b2 + 2ab = (a + b)2
= 4 cos 2x [(1)2 – 1/4 (4 cos2 x sin2 x)]
= 4 cos 2x [(1)2 – 1/4 (2 cos x sin x)2]
Again as we know, sin 2x = 2sin x cos x
= 4 cos 2x [(12) – 1/4 (sin 2x)2]
= 4 cos 2x (1 – 1/4 sin2 2x)
As as we know, sin2 x = 1 – cos2 x
= 4 cos 2x [1 – 1/4 (1 – cos2 2x)]
= 4 cos 2x [1 – 1/4 + 1/4 cos2 2x]
= 4 cos 2x [3/4 + 1/4 cos2 2x]
= 4 (3/4 cos 2x + 1/4 cos3 2x)
= 3 cos 2x + cos3 2x
= cos3 2x + 3 cos 2x
= LHS
Thus proved.
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{1 - \cos 2x + \sin 2x}{1 + \cos 2x + \sin 2x} = \tan x\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
Prove that: \[\cot^2 x - \tan^2 x = 4 \cot 2 x \text{ cosec } 2 x\]
Prove that \[\sin 3x + \sin 2x - \sin x = 4 \sin x \cos\frac{x}{2} \cos\frac{3x}{2}\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\text{ tan } x = \frac{b}{a}\] , then find the value of \[\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\] .
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
If \[\tan x = t\] then \[\tan 2x + \sec 2x =\]
The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The greatest value of sin x cos x is ______.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
The value of cos12° + cos84° + cos156° + cos132° is ______.
The value of `sin pi/10 sin (13pi)/10` is ______.
`["Hint: Use" sin18^circ = (sqrt5 - 1)/4 "and" cos36^circ = (sqrt5 + 1)/4]`
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of `(sin 50^circ)/(sin 130^circ)` is ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.