Advertisements
Advertisements
Question
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
Solution
`cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
= `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (pi - (3pi)/8) + cos^4 (pi - pi/8)`
= `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (3pi)/8 + cos^4 pi/8`
= `2cos^4 pi/8 + 2cos^4 (3pi)/8`
= `2[cos^4 pi/8 + cos^4 (3pi)/8]`
= `2[cos^4 pi/8 + cos^4 (pi/2 - pi/8)]`
= `2[cos^4 pi/8 + sin^4 pi/8]`
= `2[cos^4 pi/8 + sin^4 pi/8 + 2sin^2 pi/8 . cos^2 pi/8 - 2sin^2 pi/8 . cos^2 pi/8]`
= `2[(cos^2 pi/8 + sin^2 pi/8)^2 - 2sin^2 pi/8 . cos^2 pi/8]`
= `2[1 - 2sin^2 pi/8 cos^2 pi/8]`
= `2 - 4sin^2 pi/8 . cos^2 pi/8`
= `2 - (2sin pi/8 . cos pi/8)^2`
= `2 - (sin pi/4)^2`
= `2 - (1/sqrt(2))^2`
= `2 - 1/2`
= `3/2`
Hence, the required value of the expression = `3/2`
APPEARS IN
RELATED QUESTIONS
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Show that: \[3 \left( \sin x - \cos x \right)^4 + 6 \left( \sin x + \cos \right)^2 + 4 \left( \sin^6 x + \cos^6 x \right) = 13\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
If \[\cos\alpha + \cos\beta = 0 = \sin\alpha + \sin\beta\] , then prove that \[\cos2\alpha + \cos2\beta = - 2\cos\left( \alpha + \beta \right)\] .
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
\[\cot x + \cot\left( \frac{\pi}{3} + x \right) + \cot\left( \frac{2\pi}{3} + x \right) = 3 \cot 3x\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
Write the value of \[\cos^2 76° + \cos^2 16° - \cos 76° \cos 16°\]
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of \[\frac{\sin 5 \alpha - \sin 3\alpha}{\cos 5 \alpha + 2 \cos 4\alpha + \cos 3\alpha} =\]
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.