Advertisements
Advertisements
Question
Solution
\[Here, \]
\[\tan\left( 82 . 5 \right)° = \tan\left( 90 - 7 . 5 \right)°\]
\[ = \cot\left( 7 . 5 \right)°\]
\[ = \frac{1}{\tan\left( 7 . 5 \right)°}\]
\[\text{ We know } , \]
\[\tan\left( \frac{x}{2} \right) = \frac{\text{ sin } x}{1 + \text{ cos } x}\]
\[\text{ On putting } x = 15° , \text{ we get } \]
\[\tan \left( \frac{15}{2} \right)^°= \frac{\sin15°}{1 + \cos15°}\]
\[ = \frac{\sin\left( 45 - 30 \right)° }{1 + \cos\left( 45 - 30 \right)°}\]
\[ = \frac{\sin45° \cos30° - \sin30° \cos45° }{1 + \cos45° \cos30° + \sin45° \sin30° }\]
\[ = \frac{\left( \frac{1}{\sqrt{2}} \right) \times \left( \frac{\sqrt{3}}{2} \right) - \left( \frac{1}{2} \right) \times \left( \frac{1}{\sqrt{2}} \right)}{1 + \left( \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \right) + \left( \frac{1}{\sqrt{2}} \times \frac{1}{2} \right)}\]
\[ = \frac{\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}}{1 + \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}}\]
\[ = \frac{\sqrt{3} - 1}{2\sqrt{2} + \sqrt{3} + 1}\]
\[\text{ Now } , \]
\[\tan\left( 82 . 5 \right)° = \frac{1}{\tan\left( 7 . 5 \right)° }\]
\[ = \frac{2\sqrt{2} + \sqrt{3} + 1}{\sqrt{3} - 1}\]
\[ = \frac{2\sqrt{2} + \sqrt{3} + 1}{\sqrt{3} - 1} \times \frac{\sqrt{3} + 1}{\sqrt{3} + 1}\]
\[ = \frac{\sqrt{3} + 1\left( 2\sqrt{2} + \sqrt{3} + 1 \right)}{\left( \sqrt{3} \right)^2 - 1^2}\]
\[ = \frac{2\sqrt{6} + 3 + \sqrt{3} + 2\sqrt{2} + \sqrt{3} + 1}{3 - 1}\]
\[ = \frac{2\sqrt{6} + 2\sqrt{3} + 2\sqrt{2} + 4}{2}\]
\[ = \sqrt{6} + \sqrt{3} + \sqrt{2} + 2\]
\[ = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6} . . . \left( 1 \right)\]
\[ = \sqrt{6} + \sqrt{3} + 2 + \sqrt{2}\]
\[ = \sqrt{3}\left( \sqrt{2} + 1 \right) + \sqrt{2}\left( \sqrt{2} + 1 \right)\]
\[ = \left( \sqrt{3} + \sqrt{2} \right)\left( \sqrt{2} + 1 \right) . . . \left( 2 \right)\]
\[\text{ From eqs } . \left( 1 \right) \text{ and } \left( 2 \right), \text{ we get} \]
\[ \tan\left( 82 . 5 \right)° = \left( \sqrt{3} + \sqrt{2} \right)\left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos 2 x}{1 + \sin 2 x} = \tan \left( \frac{\pi}{4} - x \right)\]
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If 0 ≤ x ≤ π and x lies in the IInd quadrant such that \[\sin x = \frac{1}{4}\]. Find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan\frac{x}{2}\]
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha + \cos \beta = b\] , prove that
(ii) \[\cos \left( \alpha - \beta \right) = \frac{a^2 + b^2 - 2}{2}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that: \[\cos 36° \cos 42° \cos 60° \cos 78° = \frac{1}{16}\]
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of sin50° – sin70° + sin10° is equal to ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]