Advertisements
Advertisements
Question
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
Solution
\[\frac{\pi}{8} = \left( 22\frac{1}{2} \right)^°\]
\[Let A = \left( 22\frac{1}{2} \right)^° \]
\[\text{ Using the identity } \cot2A = \frac{\cot^2 A - 1}{2\text{ cot } A}, \text{ we get } \]
\[\cot45° = \frac{\cot^2 \left( 22\frac{1}{2} \right)^° - 1}{2\cot \left( 22\frac{1}{2} \right)^°} \]
\[ \Rightarrow 1 = \frac{\cot^2 \left( 22\frac{1}{2} \right)^°- 1}{2\cot \left( 22\frac{1}{2} \right)^°} \left( \because \cot45° = 1 \right)\]
\[ \Rightarrow 2\cot \left( 22\frac{1}{2} \right)^° - \cot^2 \left( 22\frac{1}{2} \right)^° + 1 = 0 \]
\[\Rightarrow \cot^2 \left( 22\frac{1}{2} \right)^\circ - 2\cot \left( 22\frac{1}{2} \right)^\circ - 1 = 0\]
\[ \Rightarrow \left\{ \cot^2 \left( 22\frac{1}{2} \right)^\circ - 2\cot \left( 22\frac{1}{2} \right)^\circ + 1 \right\} - 2 = 0\]
\[ \Rightarrow \left\{ \cot \left( 22\frac{1}{2} \right)^\circ - 1 \right\}^2 = 2\]
\[ \Rightarrow \cot \left( 22\frac{1}{2} \right)^\circ - 1 = \sqrt{2}\]
\[ \Rightarrow \cot \left( 22\frac{1}{2} \right)^\circ = \sqrt{2} + 1\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[\frac{\sin 2x}{1 + \cos 2x} = \tan x\]
Prove that: \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} = \tan x\]
Prove that: \[\frac{\cos x}{1 - \sin x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right)\]
Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]
Prove that: \[\cos^2 \left( \frac{\pi}{4} - x \right) - \sin^2 \left( \frac{\pi}{4} - x \right) = \sin 2x\]
Prove that: \[\cos 4x - \cos 4\alpha = 8 \left( \cos x - \cos \alpha \right) \left( \cos x + \cos \alpha \right) \left( \cos x - \sin \alpha \right) \left( \cos x + \sin \alpha \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that \[\left| \cos x \cos \left( \frac{\pi}{3} - x \right) \cos \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The value of sin 20° sin 40° sin 60° sin 80° is ______.
Find the value of the expression `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8`
[Hint: Simplify the expression to `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]`
If tanθ = `1/2` and tanΦ = `1/3`, then the value of θ + Φ is ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.