Advertisements
Advertisements
Question
Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
Solution
`tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`
LHS = `tan x + tan (π/3 + x) - tan(π/3 - x)`
`"LHS" = tan x + ((tan (π/3) + tan x)/(1 - tan x tan (π/3))) - ((tan (π/3) - tan x)/(1 + tan x tan (π/3)))`
We know that,
`tan (A + B) = ((tan A + tan B)/(1 - tan A tan B))` and
`tan (A _ B) = ((tan A - tan B)/(1 + tan A tan B))`
So,
`"LHS" = tan x + ((sqrt3 + tan x)/(1 - sqrt3 tan x)) - ((sqrt3 - tan x)/(1 + sqrt3 tan x))`
`"LHS" = tan x + (((1 + sqrt3 tan x)(sqrt3 + tan x) - (1 - sqrt3 tan x)(sqrt3 - tan x))/((1 - sqrt3tan x)(1 + sqrt3 tanx)))`
Simplify and cancel the similar terms of different sign in the above expression
we get,
`"LHS" = tan x + ((0 + 6tan x + 2tan x + 0)/(1 - 3tan^2x))`
`"LHS" = tan x + ((8tan x)/(1 - 3tan^2x))`
`"LHS" = (tan x (1 - 3tan^2x) + 8tan x)/(1 - 3tan^2x)`
`"LHS" = (tan x - 3tan^3x + 8tan x)/(1 - 3tan^2x)`
`"LHS" = (9tan x - 3tan^3x)/(1 - 3tan^2x)`
`"LHS" = 3((3tan x - tan^3x)/(1 - 3tan^2x))`
`"LHS" = 3 tan 3x ...{tan 3x = (3tanx - tan^3x)/(1 - 3tan^2x)`
RHS = 3 tan 3x
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that: \[\frac{\sin 2x}{1 - \cos 2x} = cot x\]
Prove that: \[1 + \cos^2 2x = 2 \left( \cos^4 x + \sin^4 x \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
Prove that: \[\cos\frac{\pi}{5}\cos\frac{2\pi}{5}\cos\frac{4\pi}{5}\cos\frac{8\pi}{5} = \frac{- 1}{16}\]
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\sin \alpha = \frac{4}{5} \text{ and } \cos \beta = \frac{5}{13}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \frac{8}{\sqrt{65}}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
If \[\tan\frac{x}{2} = \frac{m}{n}\] , then write the value of m sin x + n cos x.
If \[\text{ sin } x + \text{ cos } x = a\], find the value of \[\left|\text { sin } x - \text{ cos } x \right|\] .
The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\] is
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
The value of \[\left( \cot \frac{x}{2} - \tan \frac{x}{2} \right)^2 \left( 1 - 2 \tan x \cot 2 x \right)\] is
The value of \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is
The value of \[2 \sin^2 B + 4 \cos \left( A + B \right) \sin A \sin B + \cos 2 \left( A + B \right)\] is
\[2 \left( 1 - 2 \sin^2 7x \right) \sin 3x\] is equal to
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of `cos^2 48^@ - sin^2 12^@` is ______.
The greatest value of sin x cos x is ______.
If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ
[Hint: m + n = 2tanθ, m – n = 2sinθ, then use m2 – n2 = (m + n)(m – n)]
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of sin50° – sin70° + sin10° is equal to ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.
The value of cos248° – sin212° is ______.
[Hint: Use cos2A – sin2 B = cos(A + B) cos(A – B)]
If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.