Advertisements
Advertisements
Question
Solution
\[LHS = \sin5x\]
\[ = \sin\left( 3x + 2x \right)\]
\[ = \sin3x \times \cos2x + \cos3x \times \sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 2 \cos^2 x - 1 \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right) \times 2\text{ sin } x \text{ cos } x\]
\[ = - 3\text{ sin } x + 4 \sin^3 x + 6\text{ sin } x \cos^2 x - 8 \sin^3 x \cos^2 x + 8\text{ sin } x \cos^4 x - 6\text{ sin } x \cos^2 x\]
\[ = 8\text{ sin } x \cos^4 x - 8 \sin^3 x \cos^2 x - 3\text{ sin } x + 4 \sin^3 x\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin } x + 3\text{ sin } x \cos^4 x + 4 \sin^3 x + 2 \sin^3 x \cos^2 x\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin} x\left( 1 - \cos^4 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[= 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin }x\left( 1 - \cos^2 x \right)\left( 1 + \cos^2 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3 \sin^3 x\left( 1 + \cos^2 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x\left[ 3\left( 1 + \cos^2 x \right) - 2\left( 2 + \cos^2 x \right) \right]\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x\left[ 3 + 3 \cos^2 x - 4 - 2 \cos^2 x \right]\]
\[ = 5\text{ sin }x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x \left[ \cos^2 x - 1 \right]\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x \times \left( - \sin^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x + \sin^5 x\]
\[ = 5 \cos^4 x \text{ sin } x - 10 \cos^2 x \sin^3 x + \sin^5 x\]
\[ = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
RELATED QUESTIONS
Prove that: \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} = \tan x\]
Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]
Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[2 \tan\frac{\alpha}{2} = \tan\frac{\beta}{2}\] , prove that \[\cos \alpha = \frac{3 + 5 \cos \beta}{5 + 3 \cos \beta}\]
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[\cos \alpha + \cos \beta = \frac{1}{3}\] and sin \[\sin\alpha + \sin \beta = \frac{1}{4}\] , prove that \[\cos\frac{\alpha - \beta}{2} = \pm \frac{5}{24}\]
Prove that: \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]
Prove that \[\left| \sin x \sin \left( \frac{\pi}{3} - x \right) \sin \left( \frac{\pi}{3} + x \right) \right| \leq \frac{1}{4}\] for all values of x
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\frac{\pi}{2} < x < \frac{3\pi}{2}\] , then write the value of \[\sqrt{\frac{1 + \cos 2x}{2}}\]
If \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
For all real values of x, \[\cot x - 2 \cot 2x\] is equal to
If \[\sin \alpha + \sin \beta = a \text{ and } \cos \alpha - \cos \beta = b \text{ then } \tan \frac{\alpha - \beta}{2} =\]
\[\sin^2 \left( \frac{\pi}{18} \right) + \sin^2 \left( \frac{\pi}{9} \right) + \sin^2 \left( \frac{7\pi}{18} \right) + \sin^2 \left( \frac{4\pi}{9} \right) =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
If \[A = 2 \sin^2 x - \cos 2x\] , then A lies in the interval
\[\frac{\sin 3x}{1 + 2 \cos 2x}\] is equal to
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
If \[\left( 2^n + 1 \right) x = \pi,\] then \[2^n \cos x \cos 2x \cos 2^2 x . . . \cos 2^{n - 1} x = 1\]
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
If \[n = 1, 2, 3, . . . , \text{ then } \cos \alpha \cos 2 \alpha \cos 4 \alpha . . . \cos 2^{n - 1} \alpha\] is equal to
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to
If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.
The greatest value of sin x cos x is ______.
If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
The value of `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` is given by ______.
If A lies in the second quadrant and 3tanA + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to ______.