Advertisements
Advertisements
प्रश्न
उत्तर
\[LHS = \sin5x\]
\[ = \sin\left( 3x + 2x \right)\]
\[ = \sin3x \times \cos2x + \cos3x \times \sin2x\]
\[ = \left( 3\text{ sin } x - 4 \sin^3 x \right)\left( 2 \cos^2 x - 1 \right) + \left( 4 \cos^3 x - 3\text{ cos } x \right) \times 2\text{ sin } x \text{ cos } x\]
\[ = - 3\text{ sin } x + 4 \sin^3 x + 6\text{ sin } x \cos^2 x - 8 \sin^3 x \cos^2 x + 8\text{ sin } x \cos^4 x - 6\text{ sin } x \cos^2 x\]
\[ = 8\text{ sin } x \cos^4 x - 8 \sin^3 x \cos^2 x - 3\text{ sin } x + 4 \sin^3 x\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin } x + 3\text{ sin } x \cos^4 x + 4 \sin^3 x + 2 \sin^3 x \cos^2 x\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin} x\left( 1 - \cos^4 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[= 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3\text{ sin }x\left( 1 - \cos^2 x \right)\left( 1 + \cos^2 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - 3 \sin^3 x\left( 1 + \cos^2 x \right) + 2 \sin^3 x\left( 2 + \cos^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x\left[ 3\left( 1 + \cos^2 x \right) - 2\left( 2 + \cos^2 x \right) \right]\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x\left[ 3 + 3 \cos^2 x - 4 - 2 \cos^2 x \right]\]
\[ = 5\text{ sin }x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x \left[ \cos^2 x - 1 \right]\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x - \sin^3 x \times \left( - \sin^2 x \right)\]
\[ = 5\text{ sin } x \cos^4 x - 10 \sin^3 x \cos^2 x + \sin^5 x\]
\[ = 5 \cos^4 x \text{ sin } x - 10 \cos^2 x \sin^3 x + \sin^5 x\]
\[ = RHS\]
\[\text{ Hence proved } .\]
APPEARS IN
संबंधित प्रश्न
Prove that: \[\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2\]
Prove that: \[\sin^2 \left( \frac{\pi}{8} + \frac{x}{2} \right) - \sin^2 \left( \frac{\pi}{8} - \frac{x}{2} \right) = \frac{1}{\sqrt{2}} \sin x\]
Prove that: \[\cos 4x = 1 - 8 \cos^2 x + 8 \cos^4 x\]
Prove that: \[\cot \frac{\pi}{8} = \sqrt{2} + 1\]
If \[\cos x = - \frac{3}{5}\] and x lies in IInd quadrant, find the values of sin 2x and \[\sin\frac{x}{2}\] .
If \[\cos x = \frac{4}{5}\] and x is acute, find tan 2x
If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]
, find the value of sin 4x.
Prove that: \[\cos 7° \cos 14° \cos 28° \cos 56°= \frac{\sin 68°}{16 \cos 83°}\]
Prove that: \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos\frac{4\pi}{65} \cos\frac{8\pi}{65} \cos\frac{16\pi}{65} \cos\frac{32\pi}{65} = \frac{1}{64}\]
If \[2 \tan \alpha = 3 \tan \beta,\] prove that \[\tan \left( \alpha - \beta \right) = \frac{\sin 2\beta}{5 - \cos 2\beta}\] .
If \[\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}\] , prove that \[\tan\frac{x}{2} = \pm \tan\frac{\alpha}{2}\tan\frac{\beta}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(ii) \[\tan\alpha \tan\beta = \frac{c - a}{c + a}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(iii)\[\tan\left( \alpha + \beta \right) = \frac{b}{a}\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 78° \cos 42° \cos 36° = \frac{1}{8}\]
Prove that: \[\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}\]
Prove that : \[\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}\]
Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]
If \[\cos 4x = 1 + k \sin^2 x \cos^2 x\] , then write the value of k.
If \[\frac{\pi}{2} < x < \pi,\] the write the value of \[\sqrt{2 + \sqrt{2 + 2 \cos 2x}}\] in the simplest form.
If \[\pi < x < \frac{3\pi}{2}\], then write the value of \[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}\] .
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\text{ sin } x + \text{ cos } x = a\], then find the value of
The value of \[2 \tan \frac{\pi}{10} + 3 \sec \frac{\pi}{10} - 4 \cos \frac{\pi}{10}\] is
If \[2 \tan \alpha = 3 \tan \beta, \text{ then } \tan \left( \alpha - \beta \right) =\]
If \[5 \sin \alpha = 3 \sin \left( \alpha + 2 \beta \right) \neq 0\] , then \[\tan \left( \alpha + \beta \right)\] is equal to
\[2 \text{ cos } x - \ cos 3x - \cos 5x - 16 \cos^3 x \sin^2 x\]
If \[\tan \left( \pi/4 + x \right) + \tan \left( \pi/4 - x \right) = \lambda \sec 2x, \text{ then } \]
The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
If \[\tan\alpha = \frac{1}{7}, \tan\beta = \frac{1}{3}\], then
\[\cos2\alpha\] is equal to