Advertisements
Advertisements
प्रश्न
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is ______.
पर्याय
`1/5`
`-1/sqrt(10)`
`-1/sqrt(5)`
`1/sqrt(10)`
उत्तर
If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos theta/2` is `-1/sqrt(5)`.
Explanation:
Given that: sinθ = `-4/5`, θ lies in third quadrant
cosθ = `sqrt(1 - sin^2 theta)`
= `sqrt(1 - (- 4/5)^2`
= `sqrt(1 - 16/25)`
= `sqrt(9/25)`
= `(+3)/(-5)`
∴ cosθ = `- 3/5`, θ lies in the third quadrant.
cosθ = `2cos^2 theta/2 - 1` ......`[because pi < theta < (3pi)/2, therefore pi/2 < theta/2 < (3pi)/4]`
⇒ `(-3)/5 = 2cos^2 theta/2 - 1`
⇒ `2cos^2 theta/2 = 1 - 3/5 = 2/5`
⇒ `cos^2 theta/2 = 2/(5 xx 2) = 1/5`
⇒ `cos theta/2 = +- 1/sqrt(5)`
⇒ `cos theta/2 = - 1/sqrt(5)` .......`[because pi/2 < theta/2 < (3pi)/4]`
APPEARS IN
संबंधित प्रश्न
Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]
If \[\cos x = - \frac{3}{5}\] and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .
If \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and } \tan \frac{x}{2}\] .
If \[\tan A = \frac{1}{7}\] and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4B
If \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]
If \[a \cos2x + b \sin2x = c\] has α and β as its roots, then prove that
(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]
Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]
Prove that: \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]
Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]
Prove that: \[\cos 6° \cos 42° \cos 66° \cos 78° = \frac{1}{16}\]
Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]
If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]
, then find the value of tan2A.
If \[\cos 2x + 2 \cos x = 1\] then, \[\left( 2 - \cos^2 x \right) \sin^2 x\] is equal to
If in a \[∆ ABC, \tan A + \tan B + \tan C = 0\], then
If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\] and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]
If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =
The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is
The value of \[\cos \left( 36° - A \right) \cos \left( 36° + A \right) + \cos \left( 54° - A \right) \cos \left( 54° + A \right)\] is
The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is
The value of sin 20° sin 40° sin 60° sin 80° is ______.
The value of `cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` is ______.
If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.
`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta = (2tantheta)/(1 + tan^2theta)]`.
If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).
The value of cos12° + cos84° + cos156° + cos132° is ______.
If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.