मराठी

If sinθ = -45 and θ lies in the third quadrant then the value of cos θ2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.

पर्याय

  • `1/5`

  • `-1/sqrt(10)`

  • `-1/sqrt(5)`

  • `1/sqrt(10)`

MCQ
रिकाम्या जागा भरा

उत्तर

If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is `-1/sqrt(5)`.

Explanation:

Given that: sinθ = `-4/5`, θ lies in third quadrant

cosθ = `sqrt(1 - sin^2 theta)`

= `sqrt(1 - (- 4/5)^2`

= `sqrt(1 - 16/25)`

= `sqrt(9/25)`

= `(+3)/(-5)`

∴ cosθ = `- 3/5`, θ lies in the third quadrant.

cosθ = `2cos^2  theta/2 - 1`  ......`[because pi < theta < (3pi)/2, therefore pi/2 < theta/2 < (3pi)/4]`

⇒ `(-3)/5 = 2cos^2  theta/2 - 1`

⇒ `2cos^2  theta/2 = 1 - 3/5 = 2/5`

⇒ `cos^2  theta/2 = 2/(5 xx 2) = 1/5`

⇒ `cos  theta/2 = +- 1/sqrt(5)`

⇒ `cos  theta/2 = - 1/sqrt(5)`   .......`[because pi/2 < theta/2 < (3pi)/4]`

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometric Functions - Exercise [पृष्ठ ५८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 3 Trigonometric Functions
Exercise | Q 52 | पृष्ठ ५८

संबंधित प्रश्‍न

Prove that: \[\cos^6 A - \sin^6 A = \cos 2A\left( 1 - \frac{1}{4} \sin^2 2A \right)\]

 

 If \[\cos x = - \frac{3}{5}\]  and x lies in the IIIrd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2}, \sin 2x\] .

 

 


If  \[\sin x = \frac{\sqrt{5}}{3}\] and x lies in IInd quadrant, find the values of \[\cos\frac{x}{2}, \sin\frac{x}{2} \text{ and }  \tan \frac{x}{2}\] . 

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


If  \[\sec \left( x + \alpha \right) + \sec \left( x - \alpha \right) = 2 \sec x\] , prove that \[\cos x = \pm \sqrt{2} \cos\frac{\alpha}{2}\]

 

If \[a \cos2x + b \sin2x = c\]  has α and β as its roots, then prove that 

(i) \[\tan\alpha + \tan\beta = \frac{2b}{a + c}\]

 


Prove that: \[4 \left( \cos^3 10 °+ \sin^3 20° \right) = 3 \left( \cos 10°+ \sin 2° \right)\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

Prove that: \[\sin^2 \frac{2\pi}{5} - \sin^{2 -} \frac{\pi}{3} = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

If \[\text{ tan } A = \frac{1 - \text{ cos } B}{\text{ sin } B}\]

, then find the value of tan2A.

 

 


If \[\cos 2x + 2 \cos x = 1\]  then, \[\left( 2 - \cos^2 x \right) \sin^2 x\]  is equal to 

 
 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


If α and β are acute angles satisfying \[\cos 2 \alpha = \frac{3 \cos 2 \beta - 1}{3 - \cos 2 \beta}\] , then tan α =

 

The value of \[\cos^4 x + \sin^4 x - 6 \cos^2 x \sin^2 x\] is 


The value of \[\cos \left( 36°  - A \right) \cos \left( 36° + A \right) + \cos \left( 54°  - A \right) \cos \left( 54°  + A \right)\] is 

 

The value of \[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right)\] is

 

The value of sin 20° sin 40° sin 60° sin 80° is ______.


The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of cos12° + cos84° + cos156° + cos132° is ______.


If tanA = `(1 - cos "B")/sin"B"`, then tan2A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×