हिंदी

The Value of Cos 2 ( π 6 + X ) − Sin 2 ( π 6 − X ) is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of  \[\cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\] is 

  

विकल्प

  • \[\frac{1}{2} \cos 2x\]

  • 0

  • \[- \frac{1}{2} \cos 2x\]

  • \[\frac{1}{2}\]

MCQ

उत्तर

\[\frac{1}{2} \cos 2x\]

\[\text{ We have, } \]

\[ \cos^2 \left( \frac{\pi}{6} + x \right) - \sin^2 \left( \frac{\pi}{6} - x \right)\]

\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left[ \frac{\pi}{2} - \left( \frac{\pi}{6} - x \right) \right]\]

\[ = \cos^2 \left( \frac{\pi}{6} + x \right) - \cos^2 \left( \frac{\pi}{3} + x \right)\]

\[ = \left[ \cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} + x \right) \right]\left[ \cos\left( \frac{\pi}{6} + x \right) - \cos\left( \frac{\pi}{3} + x \right) \right]\]

\[ = 2\cos\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \cos\left( \frac{\frac{\pi}{6} + x - \frac{\pi}{3} - x}{2} \right) 2\sin\left( \frac{\frac{\pi}{6} + x + \frac{\pi}{3} + x}{2} \right) \sin\left( \frac{\frac{\pi}{3} + x - \frac{\pi}{6} - x}{2} \right)\]

\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( - \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]

\[ = 4\cos\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{12} \right) \sin\left( \frac{\pi}{4} + x \right) \sin\left( \frac{\pi}{12} \right)\]

\[ = \left[ 2\sin\left( \frac{\pi}{4} + x \right)\cos\left( \frac{\pi}{4} + x \right) \right]\left[ 2 \sin\left( \frac{\pi}{12} \right)\cos\left( \frac{\pi}{12} \right) \right]\]

\[ = \sin\left( \frac{\pi}{2} + 2x \right)\sin\frac{\pi}{6}\]

\[ = \cos2x \times \frac{1}{2}\]

\[ = \frac{1}{2}\cos2x\]

shaalaa.com
Values of Trigonometric Functions at Multiples and Submultiples of an Angle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Values of Trigonometric function at multiples and submultiples of an angle - Exercise 9.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 9 Values of Trigonometric function at multiples and submultiples of an angle
Exercise 9.5 | Q 20 | पृष्ठ ४४

संबंधित प्रश्न

Prove that: \[\sqrt{2 + \sqrt{2 + 2 \cos 4x}} = 2 \text{ cos } x\]

 

Prove that: \[\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} = 2\]


Prove that: \[\left( \cos \alpha + \cos \beta^2 \right) + \left( \sin \alpha + \sin \beta \right)^2 = 4 \cos^2 \left( \frac{\alpha - \beta}{2} \right)\]

 

Prove that: \[\cos^3 2x + 3 \cos 2x = 4\left( \cos^6 x - \sin^6 x \right)\]


Prove that: \[\left( \sin 3x + \sin x \right) \sin x + \left( \cos 3x - \cos x \right) \cos x = 0\]


Prove that: \[\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x\]

 

Show that: \[2 \left( \sin^6 x + \cos^6 x \right) - 3 \left( \sin^4 x + \cos^4 x \right) + 1 = 0\]

 

Prove that:\[\tan\left( \frac{\pi}{4} + x \right) + \tan\left( \frac{\pi}{4} - x \right) = 2 \sec 2x\]

 

\[\tan 82\frac{1° }{2} = \left( \sqrt{3} + \sqrt{2} \right) \left( \sqrt{2} + 1 \right) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}\]

 


 If \[\sin x = \frac{4}{5}\] and \[0 < x < \frac{\pi}{2}\]

, find the value of sin 4x.

 

 


If \[\tan A = \frac{1}{7}\]  and \[\tan B = \frac{1}{3}\] , show that cos 2A = sin 4

 

 


Prove that:  \[\sin 5x = 5 \sin x - 20 \sin^3 x + 16 \sin^5 x\]

 

Prove that:  \[\cos^3 x \sin 3x + \sin^3 x \cos 3x = \frac{3}{4} \sin 4x\]

 

Prove that `tan x + tan (π/3 + x) - tan(π/3 - x) = 3tan 3x`


\[\sin^3 x + \sin^3 \left( \frac{2\pi}{3} + x \right) + \sin^3 \left( \frac{4\pi}{3} + x \right) = - \frac{3}{4} \sin 3x\]

 


Prove that: \[\sin^2 24°- \sin^2 6° = \frac{\sqrt{5} - 1}{8}\]

  

Prove that: \[\cos 6° \cos 42°   \cos 66°    \cos 78° = \frac{1}{16}\]

 

Prove that: \[\cos\frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos\frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}\]

 

If  \[\frac{\pi}{2} < x < \pi\], then write the value of \[\frac{\sqrt{1 - \cos 2x}}{1 + \cos 2x}\] .

 

 


If \[\frac{\pi}{4} < x < \frac{\pi}{2}\], then write the value of \[\sqrt{1 - \sin 2x}\] .

 

 


Write the value of \[\cos\frac{\pi}{7} \cos\frac{2\pi}{7} \cos\frac{4\pi}{7} .\]

  

\[\frac{\sec 8A - 1}{\sec 4A - 1} =\]

 


The value of \[\cos \frac{\pi}{65} \cos \frac{2\pi}{65} \cos \frac{4\pi}{65} \cos \frac{8\pi}{65} \cos \frac{16\pi}{65} \cos \frac{32\pi}{65}\]  is 

  

For all real values of x, \[\cot x - 2 \cot 2x\] is equal to 

 

If in a  \[∆ ABC, \tan A + \tan B + \tan C = 0\], then

\[\cot A \cot B \cot C =\]
 

 


If \[\cos x = \frac{1}{2} \left( a + \frac{1}{a} \right),\]  and \[\cos 3 x = \lambda \left( a^3 + \frac{1}{a^3} \right)\] then \[\lambda =\]

 

 


If \[\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}\] , then

 

The value of \[\tan x \sin \left( \frac{\pi}{2} + x \right) \cos \left( \frac{\pi}{2} - x \right)\]

 

The value of \[\frac{2\left( \sin 2x + 2 \cos^2 x - 1 \right)}{\cos x - \sin x - \cos 3x + \sin 3x}\] is 

 

If  \[\tan \frac{x}{2} = \frac{\sqrt{1 - e}}{1 + e} \tan \frac{\alpha}{2}\] , then \[\cos \alpha =\]


The value of \[\tan x + \tan \left( \frac{\pi}{3} + x \right) + \tan \left( \frac{2\pi}{3} + x \right)\] is 

 

If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.


If acos2θ + bsin2θ = c has α and β as its roots, then prove that tanα + tanβ = `(2b)/(a + c)`.

`["Hint: Use the identities" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "and" sin2theta =  (2tantheta)/(1 + tan^2theta)]`.


If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).


The value of `sin  pi/10  sin  (13pi)/10` is ______.

`["Hint: Use"  sin18^circ = (sqrt5 - 1)/4 "and"  cos36^circ = (sqrt5 + 1)/4]`


If sinθ = `(-4)/5` and θ lies in the third quadrant then the value of `cos  theta/2` is ______.


The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×